Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structures of the plastic crystal (PC), orientational glass (OTG), liquid (LQ) and ordinary glass (OG) phases of 1,6-anhydro-β-D-glucopyranose (levoglucosan) have been investigated using X-ray diffraction and molecular modeling. The experimental diffraction data in the forms of static structure factors and pair distribution functions are analyzed in reciprocal and real spaces and compared with results of model-based simulations. A new approach to modeling the structure of the disordered phases, taking into account the intermolecular scattering contribution in the form of sharp Bragg peaks, the slowly varying intensity associated with intramolecular correlations and the diffusive component resulting from structural disorder, is applied. In the case of the LQ and OG samples, reverse Monte Carlo simulations are also used. The PC and OTG phases show long-range ordering of the hexagonal close-packed (hcp)-type structure up to 120 Å with random orientation of the molecules. Assuming a rigid molecular skeleton, isotropic free rotations of the molecules about their geometrical center in full and limited angular ranges are generated in theoretical models of the structure. It is demonstrated that the adoption of free rotations of the molecules leads to the best fits to experimental data for each studied phase of levoglucosan. The diffraction patterns of the LQ and OG samples show a relatively sharp first peak originating from quasi-Bragg planes of the densely packed face-centered cubic (fcc) type molecular arrangement. Moreover, the slowly varied intensity component of LQ and OG is practically the same as that of PC and OTG, suggesting that the intramolecular structure of these four phases does not change. Interestingly, structural correlations for the disordered LQ and OG states extend surprisingly far, up to about 50 Å. In addition, for all levoglucosan phases investigated, the paracrystalline disorder imposed on the generated models resulted in better compliance with the experimental data.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S205252062001656X/ra5087sup1.pdf
The determination of pure diffraction profiles using a regularization procedure for the studied levoglucosan diffraction data and the results of modeling of the LQ and OG phases using the hcp-type structure are described


Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds