Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
VF3-type FeF3 is generally considered as a perovskite with a completely vacant A site. The high-pressure structural evolution of FeF3 has been studied by both X-ray diffraction and theoretical simulation up to 62.0 GPa. Experimental and theoretical results demonstrate that VF3-type FeF3 is stable up to 50 GPa. The structural evolution presents three features at different pressure ranges. At P < 10 GPa, the volume reduction is dominated by the FeF6 octahedral rotation, and a small octahedral strain develops upon compression, which represents an elongation of FeF6 octahedra along the c axis. Between 10 and 25 GPa, the volume reduction is mainly attributed to the Fe-F bond length decreasing, and the octahedral strain gradually disappears. Between 25 and 50 GPa, an octahedral elongation along the a axis quickly develops, resulting in a substantial structural distortion. Structural instability is predicted at P > 51 GPa on the basis of a soft mode occurring in phonon calculations. The pressure-volume relationship is described by a third-order Birch-Murnaghan equation-of-state with B0 = 14 (1) GPa, B0' = 17 (1) by experiment and B0 = 10.45 (1) GPa, B'10 = 12.13 (1) by calculation.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520614014322/ps5034sup1.pdf
The unit cell dimensions of VF3-type FeF3 at various pressures by X-ray powder diffraction and the DFT calculation


Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds