Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
High-quality Hg1–xCdxTe (MCT) single crystals are essential for two-dimensional infrared detector arrays. Crystal quality plays an important role on the performance of these devices. Here, the dislocations present at the interface of CdZnTe (CZT) substrates and liquid-phase epitaxy grown MCT epilayers are investigated using X-ray Bragg diffraction imaging (XBDI). The diffraction contributions coming from the threading dislocations (TDs) of the CZT substrate and the MCT epilayers are separated using weak-beam conditions in projection topographs. The results clearly suggest that the lattice parameter of the growing MCT epilayer is, at the growth inception, very close to that of the CZT substrate and gradually departs from the substrate's lattice parameter as the growth advances. Moreover, the relative growth velocity of the MCT epilayer around the TDs is found to be faster by a factor of two to four compared with the matrix. In addition, a fast alternative method to the conventional characterization methods for probing crystals with low dislocation density such as atomic force microscopy and optical interferometry is introduced. A 1.5 mm × 1.5 mm area map of the epilayer defects with sub-micrometre spatial resolution is generated, using section XBDI, by blocking the diffraction contribution of the substrate and scanning the sample spatially.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S1600577520014149/pp5162sup1.pdf
Supporting Figures S1 and S2


Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds