Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A low-temperature rapid-mixing and flow system has been designed and implemented to monitor catalysis involving metal ions by X-ray absorption spectroscopy at the ID-18 beamline of the Advanced Photon Source, Argonne National Laboratory. The system will allow examination of biological metallo-intermediates at dilute metal ion concentrations by the detection of X-ray fluorescence. The instrument can be cooled to sub-zero temperatures, thus lengthening the life time of a reaction intermediate. A portable UV-visible spectrometer is integrated with the flow system to monitor the sample optically. The system can also be used as a continuous-flow device to minimize radiation-induced sample damage by reducing sample exposure to the X-ray beam. The integration of the stop-flow instrument with the synchrotron beamline and X-ray fluorescence detector systems makes it unique for time-resolved X-ray absorption studies of dilute biological reactions. The results of the initial testing of the system are presented.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds