Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Adaptations to hypoxia play an important role in Mycobacterium tuberculosis pathogenesis. Rv0324, which contains an HTH DNA-binding domain and a rhodanese domain, is one of the key transcription regulators in response to hypoxia. M. tuberculosis Rv1674c is a homologue of Rv0324. To understand the interdomain interaction and regulation of the HTH domain and the rhodanese domain, recombinant Rv1674c protein was purified and crystallized by the vapour-diffusion method. The crystals diffracted to 2.25 Å resolution. Preliminary diffraction analysis suggests that the crystals belonged to space group P3121 or P3221, with unit-cell parameters a = b = 67.8, c = 174.5 Å, α = β = 90, γ = 120°. The Matthews coefficient was calculated to be 2.44 Å3 Da−1, assuming that the crystallographic asymmetric unit contains two protein molecules.

Subscribe to Acta Crystallographica Section F: Structural Biology Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. F
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds