Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Titanium-rich TiNiCu shape memory thin films with ultralow fatigue have been analysed for their structural features by transmission electron microscopy. The stabilization of austenite (B2) and orthorhombic martensite (B19) variants epitaxially connected to Ti2Cu-type precipitates has been observed and found responsible for the supreme mechanical cycling capability of these compounds. Comprehensive ex situ and in situ cooling/heating experiments have demonstrated the presence of an austenitic nanoscale region in between B19 and Ti2Cu, in which the structure shows a gradual transition from B19 to B2 which is then coupled to the Ti2Cu precipitate. It is proposed that this residual and epitaxial austenite acts as a template for the temperature-induced B2↔B19 phase transition and is also responsible for the high repeatability of the stress-induced transformation. This scenario poses an antithesis to residual martensite found in common high-fatigue shape memory alloys.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S160057671600710X/nb5167sup1.pdf
Supplementary table and figures


Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds