Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A method is presented which determines the stacking fault energy in face-centred cubic materials from the critical stress that is induced via sample bending in the early stages of plastic deformation. The critical stress is gauged by in situ X-ray diffraction. This method utilizes the results of Byun's consideration of the stress dependence of the partial dislocation separation [Byun (2003). Acta Mater. 51, 3063–3071]. Byun showed that the separation distance of the partial dislocations increases rapidly when the critical stress is reached and that the critical stress needed for the rapid separation of the partial dislocations is directly proportional to the stacking fault energy. In the approach presented here, the partial dislocation separation and the corresponding triggering stress are monitored by using in situ X-ray diffraction during sample bending. Furthermore, the in situ X-ray diffraction measurement checks the possible interactions between stacking faults present on equivalent lattice planes and the interactions of the stacking faults with other microstructure defects. The capability of the proposed method was tested on highly alloyed austenitic steels containing chromium (∼16 wt%), manganese (∼7 wt%) and nickel as the main alloying elements. For the steels containing 5.9 and 3.7 wt% Ni, stacking fault energies of 17.5 ± 1.4 and 8.1 ± 0.9 mJ m−2 were obtained, respectively.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds