Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
X-ray analyzer-based phase-contrast imaging is combined with computed lamino­graphy for imaging regions of interest in laterally extended flat specimens of weak absorption contrast. The optics discussed here consist of an asymmetrically cut collimator crystal and a symmetrically cut analyzer crystal arranged in a nondispersive (+, -) diffraction geometry. A generalized algorithm is given for calculating multi-contrast (absorption, refraction and phase contrast) images of a sample. Basic formulae are also presented for lamino­graphic reconstruction. The feasibility of the method discussed was verified at the vertical wiggler beamline BL-14B of the Photon Factory. At a wavelength of 0.0733 nm, phase-contrast sectional images of plastic beads were successfully obtained. Owing to strong circular artifacts caused by a sample holder, the field of view was limited to about 6 mm in diameter.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds