Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Formation of γH2AX foci (a marker of DNA double-strand breaks), rates of foci clearance and apoptosis were investigated in cultured normal human fibroblasts and p53 wild-type malignant glioma cells after exposure to high-dose synchrotron-generated microbeams. Doses up to 283 Gy were delivered using beam geometries that included a microbeam array (50 µm wide, 400 µm spacing), single microbeams (60–570 µm wide) and a broad beam (32 mm wide). The two cell types exhibited similar trends with respect to the initial formation and time-dependent clearance of γH2AX foci after irradiation. High levels of γH2AX foci persisted as late as 72 h post-irradiation in the majority of cells within cultures of both cell types. Levels of persistent foci after irradiation via the 570 µm microbeam or broad beam were higher when compared with those observed after exposure to the 60 µm microbeam or microbeam array. Despite persistence of γH2AX foci, these irradiation conditions triggered apoptosis in only a small proportion (<5%) of cells within cultures of both cell types. These results contribute to the understanding of the fundamental biological consequences of high-dose microbeam irradiations, and implicate the importance of non-apoptotic responses such as p53-mediated growth arrest (premature senescence).

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds