Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A method of calculating the transmission of hard X-ray radiation through a perfect and well oriented photonic crystal and the propagation of the X-ray beam modified by a photonic crystal in free space is developed. The method is based on the approximate solution of the paraxial equation at short distances, from which the recurrent formula for X-ray propagation at longer distances is derived. A computer program for numerical simulation of images of photonic crystals at distances just beyond the crystal up to several millimetres was created. Calculations were performed for Ni inverted photonic crystals with the [111] axis of the face-centred-cubic structure for distances up to 0.4 mm with a step size of 4 µm. Since the transverse periods of the X-ray wave modulation are of several hundred nanometres, the intensity distribution of such a wave is changed significantly over the distance of several micrometres. This effect is investigated for the first time.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds