Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The Talbot effect is the self-imaging, at distances D multiple of DR, of the intensity downstream of a periodic object. Earlier work with hard synchrotron radiation X-rays showed the variation with D of the fundamental Fourier component of intensity to be a good measurement of beam coherence. Any higher-order Fourier coefficients \tilde{I}(D, m > 1) would be periodic with a reduced period DRm = DR/m for an ideally coherent incident beam (partial Talbot effect). The degree of coherence γ(x) is sampled through the ratio of \tilde{I}(D, m) at D = 0 and multiples of DRm. This requires the Fourier coefficient for D = 0, which is not accessible for a phase object (no contrast at D = 0). However, the ratio of the slopes of \tilde{I}(D, m) at D = 0 and D = pDRm also provides this information. Furthermore, a characterization of γ(x) is possible, provided an assumption is made on its shape, using only the ratio of the Fourier coefficient \tilde{I}(D, m) of two images a distance pDRm apart. Experiments with one- and two-dimensional phase gratings and a mixed (amplitude and phase) two-dimensional grating confirm that the partial Talbot effect approach is viable. It requires a reduced range of distances, and yields important results directly, obviating the need for computer fits. In particular, 8% of the beam intensity was found to have very low coherence in the vertical direction, probably due to monochromator imperfection.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds