Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Copper-containing nitrite reductases (CuNIRs) are multifunctional enzymes that catalyse the one-electron reduction of nitrite (NO2) to nitric oxide (NO) and the two-electron reduction of dioxygen (O2) to hydrogen peroxide (H2O2). In contrast to the mechanism of nitrite reduction, that of dioxygen reduction is poorly understood. Here, results from anaerobic synchrotron-radiation crystallography (SRX) and aerobic in-house radiation crystallography (iHRX) with a CuNIR from the thermophile Geobacillus thermodenitrificans (GtNIR) support the hypothesis that the dioxygen present in an aerobically manipulated crystal can bind to the catalytic type 2 copper (T2Cu) site of GtNIR during SRX experiments. The anaerobic SRX structure showed a dual conformation of one water molecule as an axial ligand in the T2Cu site, while previous aerobic SRX GtNIR structures were refined as diatomic molecule-bound states. Moreover, an SRX structure of the C135A mutant of GtNIR with peroxide bound to the T2Cu atom was determined. The peroxide molecule was mainly observed in a side-on binding manner, with a possible minor end-on conformation. The structures provide insights into dioxygen chemistry in CuNIRs and hence help to unmask the other face of CuNIRs.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2059798318010082/lp5028sup1.pdf
Supplementary Figure S1.

PDB references: GtNIR, 5ytl; C135A mutant, 5ytm; C135A mutant, complex with peroxide, 5ytn


Subscribe to Acta Crystallographica Section D: Biological Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds