Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Quantum-based refinement utilizes chemical restraints derived from quantum-chemical methods instead of the standard parameterized library-based restraints used in refinement packages. The motivation is twofold: firstly, the restraints have the potential to be more accurate, and secondly, the restraints can be more easily applied to new molecules such as drugs or novel cofactors. Here, a new project called Q|R aimed at developing quantum-based refinement of biomacromolecules is under active development by researchers at Shanghai University together with PHENIX developers. The central focus of this long-term project is to develop software that is built on top of open-source components. A development version of Q|R was used to compare quantum-based refinements with standard refinement using a small model system.

Subscribe to Acta Crystallographica Section D: Biological Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds