Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The stacking problem is approached by computational mechanics, using an Ising next-nearest-neighbour model. Computational mechanics allows one to treat the stacking arrangement as an information processing system in the light of a symbol-generating process. A general method for solving the stochastic matrix of the random Gibbs field is presented and then applied to the problem at hand. The corresponding phase diagram is then discussed in terms of the underlying [epsilon]-machine, or optimal finite-state machine. The occurrence of higher-order polytypes at the borders of the phase diagram is also analysed. The applicability of the model to real systems such as ZnS and cobalt is discussed. The method derived is directly generalizable to any one-dimensional model with finite-range interaction.

Subscribe to Acta Crystallographica Section A: Foundations and Advances

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds