Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure of Bacillus amyloliquefaciens ribonuclease (barnase), an extracellular 110-residue enzyme initially solved at 2.0 Å resolution, has been refined at 1.5 Å using synchrotron radiation and an imaging-plate scanner. Refinement with anisotropic atomic displacement parameters resulted in increased accuracy of the structure. The final model has a crystallographic R factor of 11.5% and an Rfree of 17.4%. The three independent molecules in the asymmetric unit, referred to as A, B and C, allowed detailed analysis of this final model and meaningful comparison with structures of barnase complexed either with nucleotide inhibitors or with its natural intracellular inhibitor, barstar. The analysis of the overall solvent structure revealed a similar number of water molecules associated with each barnase molecule; among these were 16 equivalent buried solvent molecules, the locations of which are discussed in detail and classified on the basis of their structural role. The importance of the water molecules' contribution to the barnase-barstar interaction is also highlighted. The high accuracy of the present analysis revealed the presence of a Zn2+ ion mediating the contacts between pairs of symmetry-related A, B or C molecules; such an ion had previously only been identified for pairs of C molecules.

Supporting information

PDB reference: barnase, 1a2p

Subscribe to Acta Crystallographica Section D: Biological Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds