Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Experimental structure refinements and ab initio simulation results for 18 published, fully ordered P63/m (A^{\rm I}_4)(A^{\rm II}_6)(BO4)6X2 apatite end-member compositions have been analyzed in terms of a geometric crystal-chemical model that allows the prediction of unit-cell parameters (a and c) and all atom coordinates. To an accuracy of ± 0.025 Å, the magnitude of c was reproduced from crystal-chemical parameters characterizing chains of …–AII–O3–B–O3–AII... atoms, whereas that of a was determined from those describing (AIO6)–(BO4) polyhedral arrangements. The c/a ratio could be predicted to ±0.2% using multi-variable functions based on geometric crystal-chemical model predictions, but could not be ascribed to the adjustment of a single crystal-chemical parameter. The correlations observed between algebraically independent crystal-chemical parameters representing the main observed polyhedral distortions reveal them as the minimum-energy solution to accommodate misfit components within this flexible structure type. For materials with given composition, good agreement (within ± 0.5–2.0%) of ab initio crystal-chemical parameters was observed with only those from single-crystal refinements with R ≤ 4.0%. Agreement with single-crystal work with R > 4.0% was not as good, while the scatter with those from Rietveld refinements was considerable. Accordingly, ab initio cell data, atomic coordinates and crystal-chemical parameters were reported here for the following compositions awaiting experimental work: (Zn,Hg)10(PO4)6(Cl,F)2, (Ca,Cd)10(VO4)6Cl2 and (Ca,Pb,Cd)10(CrO4)6Cl2.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108768105031125/lc5033sup1.pdf
Comparative figures


Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds