Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A high-repetition-rate mechanical shutter with asynchronous control and sub-millisecond operation has been developed and tested for specialist X-ray systems in the field of medical diagnostics and radiation therapy. Capacitor-coupled linear voice coil actuators are utilized to achieve opening and closing speeds as fast as 700 µs for an aperture height of 4 mm. The design allows for asynchronous control, permitting slave operation of the shutter, a feature that is distinctly suitable for a number of applications including particle image velocimetry, where high-frame-rate operation must be accurately synchronized and triggered by the image acquisition sequence of the detector or timing device. The design and construction of the shutter also makes it ideal, with simple and limited modifications, for applications requiring larger apertures, in particular wide beams as found in many synchrotron beamlines.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds