Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structures of the LiI and NaI salts of 2-thio­barbituric acid (2-sulfanyl­idene-1-3-diazinane-4,6-dione, H2TBA) have been studied. μ-Aqua-octa­aqua­bis­(μ-2-thio­barbiturato-κ2O:O′)bis(2-thio­barbiturato-κO)tetra­lithium(I) dihydrate, [Li4(C4H3N2O2S)4(H2O)9]·2H2O, (I), crystallizes with four symmetry-independent four-coordinated LiI cations and four independent HTBA anions. The structure contains two structurally non-equivalent LiI cations and two non-equivalent HTBA anions (bridging and terminal). Eight of the coordinated water ligands are terminal and the ninth acts as a bridge between LiI cations. Discrete [Li4(HTBA)4(H2O)9]·2H2O complexes form two-dimensional layers. Neighbouring layers are connected via hydrogen-bonding inter­actions, resulting in a three-dimensional network. Poly[μ2-aqua-tetraaqua­(μ4-2-thio­bar­biturato-κ4O:O:S:S)(μ2-thio­barbiturato-κ2O:S)disodium(I)], [Na2(C4H3N2O2S)2(H2O)5]n, (II), crystallizes with six-coordinated NaI cations. The octa­hedra are pairwise connected through edge-sharing by a water O atom and an O atom from the μ4-HTBA ligand, and these pairs are further top-shared by the S atoms to form continuous chains along the a direction. Two independent HTBA ligands integrate the chains to give a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113014078/ku3096sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113014078/ku3096Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113014078/ku3096IIsup3.hkl
Contains datablock II

CCDC references: 956976; 956977

Comment top

Alkali metal cations play an important role in nature, for instance, Li+, Na+ and K+ regulate the ionic equilibrium of living cells in the human body (Birch, 1999). In addition, they find numerous applications in man-made materials (Kennedy et al., 2006; Yin et al., 2011). These cations are known for their mainly ionic chemistry in aqueous media and their coordination number varies depending on the size of the binding partners, and on the electrostatic interaction between ligands and metal ions. Thus, the synthesis of coordination polymer networks with these metal ions is of crucial importance (Fromm, 2008). The properties of heterocyclic thioamides, which have potential as antitumour reagents, are of great interest (Raper, 1997). In particular, 2-thiobarbituric acid (H2TBA, 2-sulfanylidene-1-3-diazinane-4,6-dione) is important in pharmaceutical products and analytical chemistry (Bondock et al., 2007; Karthikeyan et al., 2008). It is a substituted mercaptopyrimidine with three mobile H atoms and ten possible tautomeric forms (Chierotti et al., 2010; Mendez et al., 2007). The methylene H atoms are very acidic and, in fact, methylene is the most acidic group in 2-thiobarbituric acid (Mendez et al., 2007; Refat et al., 2008). The characterization of alkaline thiobarbiturates is an area of continuous interest because the compounds are promising for their pharmaceutical properties (Masoud et al., 2004). The principle interest of the present study is to investigate the variation of the solid-state structures of thiobarbiturate complexes induced by alkali metal substitution. To date, the structures of 2-thiobarbiturate complexes with such metal ions as MnII and ZnII (Pan et al., 2008), CoIII (Yamanari et al., 2002), AuI (Hunks et al., 2002) and SnIV (Balas et al., 2008) have been determined, but structural information on similar compounds with alkali metals is scarce. As to alkali metal compounds with H2TBA, only the structures of the sodium complex [Na2Cl(HTBA)(H2O)2]n (Li et al., 2010) and two potassium complexes, [KHTBA]n and [K(HTBA)(H2TBA)(H2O)]n (Kubicki et al., 2012), have been characterized so far. In order to clarify the coordination modes of the thiobarbiturate ligand with alkali metals, the structural investigation of new lithium(I) and sodium(I) salts with thiobarbituric acid, namely µ-aqua-octaaquabis(µ-2-thiobarbiturato-κ2O:O)bis(2-thiobarbiturato-κO)tetralithium(I) dihydrate, (I), and poly[µ2-aqua-tetraaqua(µ4-2-thiobarbiturato-κ4O:O:S:S)(µ2-thiobarbiturato-κ2O:S)]disodium(I)], (II), has been carried out and the results are presented here.

X-ray single-crystal structure analysis of (I) shows it to be a discrete molecular [Li4(HTBA)4(H2O)9] complex with two solvent water molecules (Fig. 1). The Li+ cation is bonded to four O atoms and this group forms a distorted tetrahedron. Eight coordinated water ligands are terminal but the ninth (O4) acts as a bridge between metal centres. Two Li+ cations are linked by a water Li1—O4—Li2 bridge and each of the atoms Li1 and Li2 is coordinated by one O atom (O2 or O1) from one coordinated water molecule, one O atom (O2B or O2D) from a terminal HTBA- ligand and one O atom (O2C or O2A) from a bridging HTBA- ligand. The Li1—O and Li2—O bond lengths are in the ranges 1.959 (6)–2.109 (6) and 1.980 (6)–2.112 (6) Å, respectively (Table 1). The bond lengths are similar to those in related LiI compounds [Cambridge Structural Database (CSD), Version 5.34; Allen, 2002 [How many hits?]]. As is evident from Table 1, the Li1—O4 and Li2—O4 bonds are ~0.12 Å longer than the other Li—O bonds.

The geometry observed for the 2-thiobarbiturate ligand is similar to that of the free ligand (Chierotti et al., 2010). The O1A—C4A bond length of 1.273 (4) Å and O1C—C4C bond length of 1.266 (4) Å observed for the bridging HTBA- ligand are significantly longer than the conventional CO double-bond length of 1.20 Å. The other C—O bond lengths are in the range 1.253 (4)–1.258 (4) Å. The O—Li—O bond angles are similar to those commonly observed in LiI complexes.

Each of the atoms Li3 and Li4 is connected to atoms Li1 and Li2, respectively, through a bridging HTBA- ligand. In addition, each of them is also bonded to three water O atoms. This arrangement generates a discrete [Li4(HTBA)4(H2O)9].2H2O molecular unit which is extended via hydrogen bonding to form a two-dimensional layer (Fig. 2); further hydrogen bonds form connections between the layers.

The crystal structure of (I) is stabilized by a network of N—H···O, O—H···O, O—H···S and N—H···S hydrogen bonds (Table 2). All resolved water H atoms are involved in hydrogen bonding to carbonyl O and S atoms of the HTBA- ligands. Within the two-dimensional layer (Fig. 2), intramolecular (intra-polymer) N—H···O, O—H···O and N—H···S hydrogen-bond interactions form rings with S(6) and S(8) graph-set motifs (Bernstein et al., 1995).

The ππ stacking synthon plays an important role in the molecular arrangement of (I) and the extended structural architecture. The perpendicular distances between the rings of neighbouring HTBA- ligands are in the range 3.456 (1)–3.546 (1) Å (Table 5) and are comparable with those in potassium thiobarbiturate (Golovnev & Molokeev, 2013). Rings A and D are approximately coplanar, similar to rings B and C (rings defined in Fig. 1). However, there is a twist of ca 26° about the Li1···Li2 vector between the two two-ring planes. The powder diffraction pattern for (I) simulated from the single-crystal result agrees well with the recorded pattern. This indicates that the measured crystals were representative of the bulk structure.

X-ray single-crystal analysis of (II) indicates that it is a polymeric structure. As shown in Fig. 3, the asymmetric unit of (II) consists of two Na+ cations, two HTBA- ligands and five coordinated water molecules. One HTBA- ligand (denoted B-type) is connected to four Na+ cations in a µ4-κ4O:O:S:S mode, while the second HTBA- ligand (denoted A-type) is µ2-bridging. Each Na+ cation is six-coordinated by three HTBA- anions and three water molecules. Atom Na1 is coordinated by water atoms O1, O4 and O5, and by atoms O2B and S2i [symmetry code: (i) -x + 1, -y + 1, -z + 1] from two HTBA- (B) ligands and atom O2A from a µ2-HTBA- (A) ligand (Fig. 4). Atom Na2 is coordinated by water atoms O1, O2 and O3, atom O2 from an HTBA- ligand and atoms S1i and S2ii [symmetry code: (ii) -x, -y + 1, -z + 1] from two different HTBA- (A and B) ligands. The Na1—O distances are in the range 2.3860 (19)–2.521 (2) Å and the Na2—O distances are in the range 2.325 (2)–2.443 (2) Å (Table 3), and these values are comparable with those reported previously for related NaI complexes (Li et al., 2010). The Na1···S2i, Na2···S1i and Na2···S2ii [Please check added symops] bond lengths are 3.0372 (12), 2.8360 (11) and 3.0322 (13) Å, respectively. The resulting octahedra are pairwise connected through edge-sharing with water atom O1 and atom O2B from the B-type HTBA- ligand, and these pairs are further connected by top-sharing of atom S2ii to form continuous chains along the a direction (Fig. 4). Two arbitrary HTBA- ligands connect these chains into a three-dimensional network. The µ2-bridging type-A HTBA- ligand coordinates to atom Na1 through atom O2A and to atom Na2i through atom S1. Combined with the µ4-κ4O:O:S:S coordination of the type-B HTBA- ligand, this means that atom Na1 is connected to atom S2 [S2i?] only, while atom Na2 is connected to atoms S2ii and S1i. Two independent bridging ligands (A and Bi) combine with atoms Na1 and Na2i to form a 12-membered loop. Such a loop is also formed by ligands B and Bi and atoms Na1 and Na1i around the centre of inversion, and by ligands B and Bii and atoms Na2 and Na2ii.

The crystal structure of (II) is stabilized by numerous hydrogen bonds of N—H···O, O—H···O and N—H···S types (Table 4). As observed in (I), (II) also has N—H···S hydrogen-bond interactions, resulting in rings of graph set R22(8). All resolved water H atoms are involved in hydrogen bonding to carbonyl O atoms of HTBA- ligands and O atoms of other water molecules. It is noted that all water O atoms, except for O4, are hydrogen-bond acceptors.

Two intermolecular N—H···O contacts form an eight-membered ring with graph-set descriptor R22(8) (Fig. 5). No stacking interactions are observed between the HTBA- ligands. Self-associated hydrogen bonds between HTBA- anions were also previously described in the thiobarbiturate complexes of potassium (Kubicki et al., 2012).

Comparison with structurally characterized salts reveals that the title compounds of LiI and NaI have novel structure types for alkali metal complexes. Thus, a tetranuclear complex of Li has a discrete structure [Reference?]. However, all the previously determined structures of 2-thiobarbiturate complexes are polymers. In (I), the coordination of HTBA- occurs through the µ2-O:O' ligands, as in the polymers {[M2-HTBA-O,O')2(H2O)].2(OC3H6)}n (M = Zn and Mn; Pan et al., 2008). As well as the µ-type ligands, (I) has also terminal O-coordinated HTBA- ligands, as observed in [(n-Bu)3Sn(HTBA-O)].H2O (Balas et al., 2008). Only bridging ligands are present in (II), as in the two potassium complexes [K(µ3-S,O-HTBA)]n and [K(µ2-S,O-HTBA)(µ2-S,O-H2TBA)(µ-H2O)]n (Kubicki et al., 2012). As observed in (II), in the coordination polymer [Na24-HTBA-O,O,O',O')(µ4-Cl)(µ2-H2O)2]n, the NaI cation is six-coordinated and connected by µ4-HTBA- bridging ligands (Li et al., 2010). In this compound, the µ4-HTBA- ligand exhibits a µ4-κ4O:O:O':O' coordination mode. However, in (II), one of the two HTBA- anions is a µ4-κ4O:O:S:S-coordinated ligand and the second is a µ2-κ2O:S ligand. The crystal structures of three CoIII complexes revealed that coordination occurs through the S- and N-atom donors of TBA2- (Yamanari et al., 2002). There are also reports of S-coordinated HTBA- and N,S-coordinated TBA2- ligands in polynuclear gold(I) complexes (Hunks et al., 2002). Thus, in (I) and (II), new coordination modes of the thiobarbiturate ligand with alkali metals are presented. One of the coordinated water ligands in each of (I) and (II) acts as a bridge between the two metal centres. It is evident that the presence of water significantly affects the crystal packing.

Related literature top

For related literature, see: Allen (2002); Balas et al. (2008); Bernstein et al. (1995); Birch (1999); Bondock et al. (2007); Chierotti et al. (2010); Fromm (2008); Golovnev & Molokeev (2013); Hunks et al. (2002); Karthikeyan et al. (2008); Kennedy et al. (2006); Kubicki et al. (2012); Li et al. (2010); Masoud et al. (2004); Mendez et al. (2007); Pan et al. (2008); Raper (1997); Refat et al. (2008); Yamanari et al. (2002); Yin et al. (2011).

Experimental top

LiOH.H2O and NaOH of reagent-grade purity were used as starting materials without additional purification. 2-Thiobarbituric acid (CAS 504-17-6) was supplied by Fluka. The ligand (0.002 mol) was mixed with the corresponding metal hydroxide (0.002 mol) in distilled water (5 ml). After dissolution, the reaction mixture was filtered and left undisturbed for crystallization. Crystals of [Li4(HTBA)4(H2O)9].2H2O, (I), and [Na2(HTBA)2(H2O)5]n, (II), precipitated from the solutions at room temperature as a result of water evaporation.

Refinement top

In both structures, all H atoms of the HTBA- ions were positioned geometrically as riding on their parent atoms, with C—H = 0.93 Å, N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C,N). Some water H atoms in (I) and all water atoms in (II) were refined with distance restraints of O—H = 0.90 (3) Å. Not all the water H atoms were found via Fourier difference maps in (I); the missing water H-atom positions were calculated on the basis of potential hydrogen bonds and then refined with restraints of O—H = 0.90 (1) Å. Additional H···(S, O) distance restraints and in some cases H···H = 1.44 (3) Å in one molecule of water were used for the missing H atoms. All the water H atoms have Uiso(H) = 1.2Ueq(O). The crystal structure (II) reveals one strong peak on the difference map near water atom O5 that could not be refined as an H atom with reasonable geometry. This water molecule was thus considered as disordered over the O5A and O5B positions. The occupancies were refined with the constraint that the sum of p(O5A) and p(O5B) was equal to 1. The final refined values were p(O5A) = 0.847 (8) and p(O5B) = 0.153 (8). These disordered water O atoms were refined isotropically. Two H atoms in (II) were not resolved due to disordered water atom O5A/O5B.

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The structure of (I), showing a layer in the ac plane. The four-coordination of the LiI cations is shown by distorted tetrahedra. Dashed lines indicate hydrogen bonds and the hydrogen-bonded rings are marked.
[Figure 3] Fig. 3. The asymmetric unit of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Only the major component of the disordered water atom, O5A, is shown for clarity. The hydrogen bond is indicated by a dashed line.
[Figure 4] Fig. 4. The chains in (II), formed by the Na1 (O5S) and Na2 (O4S2) octahedra, along the crystallographic a direction. A and B are the two independent HTBA- anions. Only the major component of the disordered water atom, O5A, is shown for clarity.
[Figure 5] Fig. 5. The hydrogen-bonding interactions (dashed lines) in (II). A and B are the two independent HTBA- anions. Only the major component of the disordered water atom, O5A, is shown for clarity.
(I) µ-Aqua-octaaquabis(µ-2-thiobarbiturato-κ2O:O')bis(2-thiobarbiturato-κO)tetralithium(I) dihydrate top
Crystal data top
[Li4(C4H3N2O2S)4(H2O)9]·2H2OF(000) = 1656
Mr = 798.51Dx = 1.532 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 9969 reflections
a = 18.1669 (16) Åθ = 2.2–29.0°
b = 7.2059 (6) ŵ = 0.36 mm1
c = 26.435 (2) ÅT = 296 K
V = 3460.6 (5) Å3Needle, colourless
Z = 40.5 × 0.1 × 0.05 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
9173 independent reflections
Radiation source: fine-focus sealed tube7512 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 29.7°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2524
Tmin = 0.628, Tmax = 0.746k = 99
31550 measured reflectionsl = 3635
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.0909P)2 + 0.7869P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
9173 reflectionsΔρmax = 1.12 e Å3
526 parametersΔρmin = 0.42 e Å3
38 restraintsAbsolute structure: Flack (1983), with 4988 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (6)
Crystal data top
[Li4(C4H3N2O2S)4(H2O)9]·2H2OV = 3460.6 (5) Å3
Mr = 798.51Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 18.1669 (16) ŵ = 0.36 mm1
b = 7.2059 (6) ÅT = 296 K
c = 26.435 (2) Å0.5 × 0.1 × 0.05 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
9173 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
7512 reflections with I > 2σ(I)
Tmin = 0.628, Tmax = 0.746Rint = 0.037
31550 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.146Δρmax = 1.12 e Å3
S = 1.03Δρmin = 0.42 e Å3
9173 reflectionsAbsolute structure: Flack (1983), with 4988 Friedel pairs
526 parametersAbsolute structure parameter: 0.05 (6)
38 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.32975 (4)0.44593 (15)0.93058 (3)0.0460 (2)
O1A0.12710 (12)0.3412 (4)1.05048 (8)0.0473 (6)
O2A0.07137 (11)0.4253 (3)0.87691 (9)0.0380 (5)
N1A0.18758 (13)0.4289 (4)0.90675 (10)0.0319 (5)
H1A0.20220.44810.87630.038*
N3A0.21451 (13)0.3896 (4)0.99082 (9)0.0314 (5)
H3A0.24640.38451.01480.038*
C2A0.23944 (15)0.4194 (4)0.94365 (11)0.0297 (6)
C4A0.14014 (16)0.3663 (5)1.00368 (11)0.0336 (6)
C5A0.08962 (15)0.3764 (5)0.96457 (11)0.0345 (6)
H5A0.03980.36060.97160.041*
C6A0.11185 (15)0.4097 (4)0.91498 (11)0.0295 (6)
S20.49863 (4)0.55297 (14)0.86972 (3)0.0448 (2)
O1B0.36100 (13)0.6751 (5)1.02641 (9)0.0566 (7)
O2B0.23001 (11)0.5247 (4)0.87771 (9)0.0401 (5)
N1B0.35362 (13)0.5480 (4)0.88002 (10)0.0341 (6)
H1B0.35340.52270.84820.041*
N3B0.41753 (13)0.6201 (4)0.95187 (10)0.0334 (5)
H3B0.45880.64120.96680.040*
C2B0.41924 (15)0.5754 (4)0.90225 (11)0.0294 (6)
C4B0.35339 (17)0.6342 (5)0.98044 (12)0.0358 (6)
C5B0.28675 (16)0.6015 (5)0.95577 (11)0.0347 (6)
H5B0.24280.60920.97360.042*
C6B0.28583 (15)0.5575 (4)0.90452 (12)0.0305 (6)
S30.57893 (4)0.43620 (13)0.72718 (3)0.0408 (2)
O1C0.37188 (11)0.2871 (4)0.61372 (8)0.0405 (5)
O2C0.32159 (11)0.4328 (3)0.78450 (9)0.0401 (5)
N1C0.43759 (13)0.4275 (4)0.75270 (9)0.0306 (5)
H1C0.45320.45600.78240.037*
N3C0.46209 (13)0.3618 (4)0.66988 (9)0.0332 (5)
H3C0.49330.34930.64570.040*
C2C0.48802 (15)0.4072 (4)0.71578 (10)0.0278 (5)
C4C0.38743 (14)0.3331 (4)0.65870 (11)0.0315 (6)
C5C0.33775 (16)0.3561 (5)0.69784 (11)0.0332 (6)
H5C0.28780.33820.69180.040*
C6C0.36125 (15)0.4055 (4)0.74614 (11)0.0282 (5)
S40.24740 (4)0.54046 (15)0.78840 (3)0.0472 (2)
O1D0.10559 (13)0.6778 (5)0.63364 (10)0.0557 (8)
O2D0.02093 (11)0.5294 (3)0.78496 (8)0.0378 (5)
N1D0.10247 (13)0.5468 (4)0.78017 (10)0.0336 (6)
H1D0.10310.51880.81180.040*
N3D0.16421 (14)0.6223 (4)0.70818 (10)0.0360 (6)
H3D0.20510.64620.69310.043*
C2D0.16756 (16)0.5720 (4)0.75731 (11)0.0320 (6)
C4D0.09904 (17)0.6389 (4)0.67961 (12)0.0335 (6)
C5D0.03335 (15)0.6116 (4)0.70584 (12)0.0333 (6)
H5D0.01120.62650.68900.040*
C6D0.03340 (15)0.5623 (4)0.75687 (11)0.0277 (6)
O10.08980 (13)0.5727 (4)0.90701 (10)0.0423 (6)
H110.1376 (15)0.586 (6)0.9027 (17)0.051*
H120.071 (2)0.684 (4)0.9062 (15)0.051*
O20.16179 (14)0.5818 (4)0.75851 (10)0.0453 (6)
H210.1167 (16)0.588 (6)0.7681 (17)0.054*
H220.175 (2)0.694 (4)0.7663 (16)0.054*
O30.29199 (13)0.3821 (4)1.08541 (9)0.0460 (6)
H310.321 (2)0.292 (5)1.1011 (15)0.055*
H320.317 (2)0.485 (4)1.0900 (17)0.055*
O40.12485 (15)0.2775 (3)0.83031 (10)0.0348 (4)
H410.1060 (19)0.209 (5)0.8041 (12)0.042*
H420.128 (2)0.193 (5)0.8536 (13)0.042*
O50.44684 (14)0.3967 (4)0.51176 (9)0.0477 (6)
H510.414 (2)0.459 (5)0.4903 (14)0.057*
H520.450 (2)0.484 (5)0.5362 (13)0.057*
O60.39648 (18)0.0065 (5)0.51317 (12)0.0603 (7)
H610.409 (3)0.013 (6)0.4814 (11)0.072*
H620.412 (2)0.119 (5)0.5227 (16)0.072*
O70.53252 (12)0.1768 (4)0.58381 (10)0.0455 (6)
H710.5580 (17)0.253 (4)0.5647 (14)0.055*
H720.555 (2)0.080 (4)0.5941 (15)0.055*
O80.19522 (16)0.1320 (5)1.15046 (11)0.0628 (8)
H810.204 (3)0.041 (3)1.1268 (11)0.075*
H820.1514 (13)0.092 (6)1.1636 (16)0.075*
O90.2722 (2)0.6782 (8)1.10410 (13)0.0980 (14)
H910.2223 (8)0.680 (8)1.097 (2)0.118*
H920.294 (2)0.697 (5)1.0722 (10)0.118*
O100.14991 (19)0.5288 (5)1.15617 (14)0.0697 (9)
H1010.149 (3)0.527 (6)1.1906 (4)0.084*
H1020.184 (2)0.617 (5)1.1487 (16)0.084*
O110.0041 (2)0.8412 (7)0.57324 (18)0.1108 (18)
H1110.023 (3)0.777 (9)0.6000 (19)0.133*
H1120.038 (2)0.783 (8)0.565 (2)0.133*
Li10.2175 (3)0.4343 (9)0.8083 (2)0.0415 (13)
Li20.0329 (3)0.4320 (9)0.8551 (2)0.0433 (13)
Li30.4323 (3)0.1872 (12)0.5582 (2)0.0563 (17)
Li40.1885 (3)0.3472 (11)1.1095 (2)0.0532 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0190 (3)0.0832 (6)0.0357 (4)0.0056 (3)0.0016 (3)0.0170 (4)
O1A0.0290 (11)0.0831 (18)0.0298 (11)0.0125 (11)0.0029 (9)0.0164 (11)
O2A0.0210 (10)0.0623 (14)0.0307 (11)0.0014 (9)0.0056 (8)0.0039 (10)
N1A0.0214 (11)0.0495 (15)0.0248 (12)0.0015 (10)0.0005 (9)0.0023 (10)
N3A0.0198 (10)0.0501 (14)0.0243 (11)0.0006 (9)0.0032 (9)0.0000 (10)
C2A0.0227 (13)0.0387 (15)0.0279 (14)0.0008 (10)0.0005 (10)0.0052 (11)
C4A0.0219 (12)0.0503 (17)0.0284 (14)0.0040 (11)0.0001 (10)0.0054 (12)
C5A0.0195 (12)0.0538 (18)0.0300 (14)0.0051 (12)0.0013 (11)0.0067 (13)
C6A0.0193 (12)0.0373 (15)0.0318 (14)0.0001 (10)0.0023 (10)0.0023 (11)
S20.0194 (3)0.0754 (6)0.0396 (4)0.0053 (3)0.0028 (3)0.0126 (4)
O1B0.0340 (12)0.109 (2)0.0264 (12)0.0122 (13)0.0011 (9)0.0115 (14)
O2B0.0209 (9)0.0663 (15)0.0330 (11)0.0044 (9)0.0033 (8)0.0078 (10)
N1B0.0192 (11)0.0565 (16)0.0266 (12)0.0008 (10)0.0017 (9)0.0046 (11)
N3B0.0212 (11)0.0474 (14)0.0315 (13)0.0021 (10)0.0029 (10)0.0058 (11)
C2B0.0204 (12)0.0378 (15)0.0302 (14)0.0012 (10)0.0008 (11)0.0021 (11)
C4B0.0260 (13)0.0509 (18)0.0305 (15)0.0012 (12)0.0014 (11)0.0045 (13)
C5B0.0219 (13)0.0538 (19)0.0285 (14)0.0025 (12)0.0020 (11)0.0052 (13)
C6B0.0194 (12)0.0399 (15)0.0324 (14)0.0013 (10)0.0033 (11)0.0004 (11)
S30.0191 (3)0.0698 (5)0.0335 (4)0.0054 (3)0.0020 (3)0.0111 (4)
O1C0.0259 (10)0.0700 (15)0.0257 (10)0.0028 (10)0.0011 (8)0.0076 (10)
O2C0.0235 (10)0.0671 (15)0.0296 (11)0.0033 (9)0.0020 (8)0.0116 (10)
N1C0.0201 (11)0.0488 (14)0.0228 (11)0.0030 (9)0.0021 (9)0.0001 (10)
N3C0.0229 (11)0.0510 (15)0.0257 (11)0.0007 (10)0.0012 (9)0.0014 (10)
C2C0.0187 (11)0.0373 (14)0.0273 (13)0.0020 (10)0.0004 (10)0.0067 (10)
C4C0.0227 (12)0.0407 (16)0.0309 (14)0.0024 (11)0.0022 (11)0.0001 (11)
C5C0.0204 (12)0.0490 (17)0.0301 (14)0.0015 (11)0.0018 (10)0.0060 (12)
C6C0.0197 (12)0.0386 (15)0.0263 (12)0.0006 (10)0.0002 (10)0.0014 (11)
S40.0189 (3)0.0792 (6)0.0436 (5)0.0043 (3)0.0035 (3)0.0183 (4)
O1D0.0329 (12)0.096 (2)0.0377 (13)0.0021 (13)0.0029 (10)0.0297 (15)
O2D0.0175 (9)0.0670 (14)0.0288 (10)0.0026 (9)0.0009 (8)0.0042 (10)
N1D0.0203 (11)0.0519 (15)0.0287 (13)0.0038 (9)0.0013 (9)0.0052 (11)
N3D0.0200 (11)0.0519 (15)0.0361 (13)0.0012 (10)0.0066 (10)0.0122 (11)
C2D0.0208 (13)0.0421 (15)0.0330 (16)0.0031 (11)0.0012 (11)0.0047 (12)
C4D0.0272 (13)0.0420 (16)0.0315 (15)0.0013 (11)0.0017 (11)0.0090 (12)
C5D0.0201 (12)0.0463 (17)0.0333 (15)0.0001 (11)0.0026 (11)0.0024 (13)
C6D0.0184 (12)0.0359 (14)0.0286 (14)0.0014 (10)0.0008 (10)0.0010 (10)
O10.0271 (11)0.0612 (16)0.0385 (13)0.0068 (10)0.0003 (9)0.0095 (11)
O20.0265 (11)0.0647 (16)0.0447 (15)0.0076 (11)0.0036 (10)0.0116 (11)
O30.0359 (12)0.0667 (16)0.0354 (12)0.0076 (11)0.0090 (10)0.0116 (11)
O40.0311 (8)0.0478 (11)0.0255 (8)0.0013 (11)0.0064 (6)0.0002 (10)
O50.0364 (13)0.0755 (18)0.0312 (12)0.0118 (12)0.0012 (10)0.0028 (11)
O60.0624 (18)0.0688 (18)0.0496 (16)0.0036 (15)0.0056 (14)0.0053 (14)
O70.0293 (10)0.0604 (15)0.0467 (13)0.0074 (10)0.0020 (10)0.0088 (12)
O80.0480 (15)0.090 (2)0.0505 (17)0.0045 (15)0.0043 (13)0.0252 (15)
O90.0595 (19)0.182 (4)0.0524 (18)0.010 (3)0.0085 (16)0.003 (2)
O100.0504 (17)0.095 (2)0.064 (2)0.0057 (16)0.0016 (15)0.0105 (18)
O110.082 (2)0.128 (3)0.122 (3)0.063 (2)0.070 (2)0.072 (3)
Li10.024 (2)0.077 (4)0.023 (2)0.008 (2)0.000 (2)0.001 (2)
Li20.020 (2)0.077 (4)0.033 (3)0.003 (2)0.001 (2)0.004 (2)
Li30.038 (3)0.092 (5)0.039 (3)0.019 (3)0.007 (2)0.021 (3)
Li40.036 (3)0.089 (5)0.035 (3)0.006 (3)0.006 (2)0.023 (3)
Geometric parameters (Å, º) top
Li1—O2B1.959 (6)N1C—C2C1.347 (4)
Li1—O21.972 (6)N1C—C6C1.407 (3)
Li1—O2C1.993 (6)N1C—H1C0.8600
Li1—O42.109 (6)N3C—C2C1.342 (4)
Li2—O2A1.980 (6)N3C—C4C1.403 (4)
Li2—O11.995 (6)N3C—H3C0.8600
Li2—O2D1.995 (7)C4C—C5C1.383 (4)
Li2—O42.112 (6)C5C—C6C1.393 (4)
Li3—O71.944 (6)C5C—H5C0.9300
Li3—O61.947 (8)S4—C2D1.682 (3)
Li3—O51.964 (9)O1D—C4D1.253 (4)
Li3—O1C1.969 (6)O2D—C6D1.258 (3)
Li4—O81.895 (7)N1D—C2D1.340 (4)
Li4—O1A1.919 (6)N1D—C6D1.402 (4)
Li4—O101.930 (9)N1D—H1D0.8600
Li4—O32.001 (7)N3D—C2D1.350 (4)
S1—C2A1.688 (3)N3D—C4D1.409 (4)
O1A—C4A1.273 (4)N3D—H3D0.8600
O2A—C6A1.251 (4)C4D—C5D1.394 (4)
N1A—C2A1.358 (4)C5D—C6D1.395 (4)
N1A—C6A1.400 (4)C5D—H5D0.9300
N1A—H1A0.8600O1—H110.88 (3)
N3A—C2A1.344 (4)O1—H120.87 (3)
N3A—C4A1.403 (4)O2—H210.86 (3)
N3A—H3A0.8600O2—H220.87 (3)
C4A—C5A1.384 (4)O3—H310.94 (3)
C5A—C6A1.393 (4)O3—H320.88 (3)
C5A—H5A0.9300O4—H410.92 (2)
S2—C2B1.687 (3)O4—H420.87 (2)
O1B—C4B1.258 (4)O5—H510.93 (2)
O2B—C6B1.260 (4)O5—H520.90 (2)
N1B—C2B1.344 (4)O6—H610.88 (3)
N1B—C6B1.393 (4)O6—H620.89 (2)
N1B—H1B0.8600O7—H710.878 (19)
N3B—C2B1.351 (4)O7—H720.85 (2)
N3B—C4B1.392 (4)O8—H810.922 (9)
N3B—H3B0.8600O8—H820.913 (10)
C4B—C5B1.395 (4)O9—H910.923 (10)
C5B—C6B1.391 (4)O9—H920.940 (8)
C5B—H5B0.9300O10—H1010.910 (10)
S3—C2C1.692 (3)O10—H1020.904 (10)
O1C—C4C1.266 (4)O11—H1110.91 (3)
O2C—C6C1.259 (4)O11—H1120.901 (10)
C4A—O1A—Li4132.8 (3)Li2—O1—H11118 (3)
C6A—O2A—Li2143.0 (3)Li2—O1—H12104 (3)
C2A—N1A—C6A124.4 (3)H11—O1—H12107 (4)
C2A—N1A—H1A117.8Li1—O2—H21109 (3)
C6A—N1A—H1A117.8Li1—O2—H22102 (3)
C2A—N3A—C4A124.6 (2)H21—O2—H2298 (4)
C2A—N3A—H3A117.7Li4—O3—H31108 (3)
C4A—N3A—H3A117.7Li4—O3—H32123 (3)
N3A—C2A—N1A116.2 (2)H31—O3—H32104 (4)
N3A—C2A—S1122.4 (2)Li1—O4—Li2115.8 (2)
N1A—C2A—S1121.4 (2)Li1—O4—H41112 (2)
O1A—C4A—C5A127.6 (3)Li2—O4—H41103 (2)
O1A—C4A—N3A115.6 (3)Li1—O4—H42121 (3)
C5A—C4A—N3A116.8 (3)Li2—O4—H42102 (3)
C4A—C5A—C6A121.3 (3)H41—O4—H42101 (3)
C4A—C5A—H5A119.3Li3—O5—H51131 (3)
C6A—C5A—H5A119.3Li3—O5—H5296 (3)
O2A—C6A—C5A127.0 (3)H51—O5—H5298 (3)
O2A—C6A—N1A116.3 (3)Li3—O6—H61112 (3)
C5A—C6A—N1A116.6 (3)Li3—O6—H62112 (3)
C6B—O2B—Li1133.0 (3)H61—O6—H62109 (3)
C2B—N1B—C6B125.0 (3)Li3—O7—H71106 (2)
C2B—N1B—H1B117.5Li3—O7—H72126 (3)
C6B—N1B—H1B117.5H71—O7—H72116 (3)
C2B—N3B—C4B124.3 (3)Li4—O8—H81102 (2)
C2B—N3B—H3B117.9Li4—O8—H82115 (3)
C4B—N3B—H3B117.9H81—O8—H82101 (5)
N1B—C2B—N3B116.0 (3)H91—O9—H92104 (4)
N1B—C2B—S2121.4 (2)Li4—O10—H101129 (3)
N3B—C2B—S2122.5 (2)Li4—O10—H10295 (3)
O1B—C4B—N3B116.7 (3)H101—O10—H102104 (3)
O1B—C4B—C5B125.9 (3)H111—O11—H112106 (3)
N3B—C4B—C5B117.4 (3)O2B—Li1—O2120.3 (3)
C6B—C5B—C4B120.3 (3)O2B—Li1—O2C100.8 (3)
C6B—C5B—H5B119.9O2—Li1—O2C106.2 (3)
C4B—C5B—H5B119.9O2B—Li1—O490.7 (2)
O2B—C6B—C5B126.9 (3)O2—Li1—O493.6 (2)
O2B—C6B—N1B116.2 (3)O2C—Li1—O4147.3 (4)
C5B—C6B—N1B116.9 (3)O2B—Li1—H22102.6 (9)
C4C—O1C—Li3132.2 (3)O2—Li1—H2221.7 (8)
C6C—O2C—Li1143.0 (3)O2C—Li1—H2299.7 (11)
C2C—N1C—C6C124.7 (2)O4—Li1—H22107.5 (10)
C2C—N1C—H1C117.7O2A—Li2—O2D100.1 (3)
C6C—N1C—H1C117.7O2A—Li2—O1108.0 (3)
C2C—N3C—C4C124.4 (2)O2D—Li2—O1121.1 (3)
C2C—N3C—H3C117.8O2A—Li2—O4146.5 (4)
C4C—N3C—H3C117.8O2D—Li2—O489.0 (2)
N3C—C2C—N1C116.3 (2)O1—Li2—O494.1 (2)
N3C—C2C—S3122.3 (2)O7—Li3—O6119.9 (4)
N1C—C2C—S3121.4 (2)O7—Li3—O597.0 (4)
O1C—C4C—C5C126.0 (3)O6—Li3—O5102.4 (3)
O1C—C4C—N3C116.9 (2)O7—Li3—O1C106.1 (3)
C5C—C4C—N3C117.1 (3)O6—Li3—O1C122.1 (4)
C4C—C5C—C6C121.1 (3)O5—Li3—O1C105.1 (4)
C4C—C5C—H5C119.5O7—Li3—H5289.4 (11)
C6C—C5C—H5C119.5O6—Li3—H52125.1 (8)
O2C—C6C—C5C127.1 (3)O5—Li3—H5223.7 (8)
O2C—C6C—N1C116.6 (3)O1C—Li3—H5285.8 (10)
C5C—C6C—N1C116.4 (2)O7—Li3—H7121.2 (7)
C6D—O2D—Li2134.5 (2)O6—Li3—H71121.1 (10)
C2D—N1D—C6D125.5 (3)O5—Li3—H7176.0 (7)
C2D—N1D—H1D117.2O1C—Li3—H71114.5 (10)
C6D—N1D—H1D117.2H52—Li3—H7171.5 (13)
C2D—N3D—C4D125.2 (3)O8—Li4—O1A118.9 (4)
C2D—N3D—H3D117.4O8—Li4—O10102.3 (3)
C4D—N3D—H3D117.4O1A—Li4—O10108.9 (3)
N1D—C2D—N3D115.5 (3)O8—Li4—O3103.0 (3)
N1D—C2D—S4121.5 (2)O1A—Li4—O3106.9 (3)
N3D—C2D—S4123.0 (2)O10—Li4—O3117.4 (4)
O1D—C4D—C5D126.5 (3)O8—Li4—H8123.4 (6)
O1D—C4D—N3D117.3 (3)O1A—Li4—H81102.4 (10)
C5D—C4D—N3D116.1 (3)O10—Li4—H81125.1 (8)
C4D—C5D—C6D121.1 (3)O3—Li4—H8194.0 (14)
C4D—C5D—H5D119.5O8—Li4—H102117.2 (10)
C6D—C5D—H5D119.5O1A—Li4—H102112.2 (12)
O2D—C6D—C5D128.2 (3)O10—Li4—H10224.1 (7)
O2D—C6D—N1D115.3 (3)O3—Li4—H10294.4 (9)
C5D—C6D—N1D116.5 (2)H81—Li4—H102140.1 (12)
C4A—N3A—C2A—N1A0.8 (4)C4C—C5C—C6C—O2C179.0 (3)
C4A—N3A—C2A—S1179.8 (2)C4C—C5C—C6C—N1C0.9 (5)
C6A—N1A—C2A—N3A0.1 (4)C2C—N1C—C6C—O2C178.8 (3)
C6A—N1A—C2A—S1179.5 (2)C2C—N1C—C6C—C5C1.2 (4)
Li4—O1A—C4A—C5A173.0 (4)C6D—N1D—C2D—N3D2.3 (5)
Li4—O1A—C4A—N3A5.7 (6)C6D—N1D—C2D—S4177.2 (2)
C2A—N3A—C4A—O1A179.3 (3)C4D—N3D—C2D—N1D3.8 (5)
C2A—N3A—C4A—C5A0.5 (5)C4D—N3D—C2D—S4175.7 (2)
O1A—C4A—C5A—C6A178.2 (4)C2D—N3D—C4D—O1D176.4 (3)
N3A—C4A—C5A—C6A0.5 (5)C2D—N3D—C4D—C5D4.1 (5)
Li2—O2A—C6A—C5A4.0 (7)O1D—C4D—C5D—C6D177.7 (4)
Li2—O2A—C6A—N1A175.6 (4)N3D—C4D—C5D—C6D2.8 (5)
C4A—C5A—C6A—O2A178.5 (3)Li2—O2D—C6D—C5D172.0 (4)
C4A—C5A—C6A—N1A1.1 (5)Li2—O2D—C6D—N1D7.8 (5)
C2A—N1A—C6A—O2A178.8 (3)C4D—C5D—C6D—O2D178.3 (3)
C2A—N1A—C6A—C5A0.8 (5)C4D—C5D—C6D—N1D1.6 (4)
C6B—N1B—C2B—N3B1.8 (5)C2D—N1D—C6D—O2D178.6 (3)
C6B—N1B—C2B—S2177.7 (2)C2D—N1D—C6D—C5D1.3 (5)
C4B—N3B—C2B—N1B1.6 (5)C6B—O2B—Li1—O2122.9 (4)
C4B—N3B—C2B—S2177.9 (2)C6B—O2B—Li1—O2C6.8 (5)
C2B—N3B—C4B—O1B179.2 (3)C6B—O2B—Li1—O4142.5 (3)
C2B—N3B—C4B—C5B0.6 (5)C6C—O2C—Li1—O2B174.8 (4)
O1B—C4B—C5B—C6B179.9 (4)C6C—O2C—Li1—O248.6 (6)
N3B—C4B—C5B—C6B0.3 (5)C6C—O2C—Li1—O476.4 (8)
Li1—O2B—C6B—C5B171.9 (4)Li2—O4—Li1—O2B65.1 (3)
Li1—O2B—C6B—N1B7.9 (5)Li2—O4—Li1—O255.4 (3)
C4B—C5B—C6B—O2B179.9 (3)Li2—O4—Li1—O2C176.6 (4)
C4B—C5B—C6B—N1B0.1 (5)C6A—O2A—Li2—O2D166.0 (4)
C2B—N1B—C6B—O2B178.8 (3)C6A—O2A—Li2—O138.5 (6)
C2B—N1B—C6B—C5B1.0 (5)C6A—O2A—Li2—O490.2 (7)
C4C—N3C—C2C—N1C0.7 (4)C6D—O2D—Li2—O2A7.3 (5)
C4C—N3C—C2C—S3178.9 (2)C6D—O2D—Li2—O1125.5 (4)
C6C—N1C—C2C—N3C0.4 (4)C6D—O2D—Li2—O4140.3 (3)
C6C—N1C—C2C—S3179.9 (2)Li1—O4—Li2—O2A174.1 (5)
Li3—O1C—C4C—C5C162.1 (4)Li1—O4—Li2—O2D67.1 (3)
Li3—O1C—C4C—N3C17.3 (6)Li1—O4—Li2—O154.0 (4)
C2C—N3C—C4C—O1C178.6 (3)C4C—O1C—Li3—O72.6 (7)
C2C—N3C—C4C—C5C0.8 (4)C4C—O1C—Li3—O6139.8 (4)
O1C—C4C—C5C—C6C179.4 (3)C4C—O1C—Li3—O5104.6 (4)
N3C—C4C—C5C—C6C0.0 (5)C4A—O1A—Li4—O8121.0 (4)
Li1—O2C—C6C—C5C0.3 (7)C4A—O1A—Li4—O10122.4 (4)
Li1—O2C—C6C—N1C179.6 (4)C4A—O1A—Li4—O35.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···S40.862.553.408 (3)174
N3A—H3A···O30.862.042.870 (4)162
N1B—H1B···O2C0.861.902.721 (4)160
N3B—H3B···O5i0.862.112.931 (4)161
N1C—H1C···S20.862.553.408 (3)178
N3C—H3C···O70.862.172.931 (4)147
N1D—H1D···O2A0.861.942.762 (4)160
N3D—H3D···O8ii0.862.142.976 (4)165
O1—H11···O2B0.88 (1)1.86 (1)2.685 (3)156 (5)
O1—H12···S2iii0.87 (3)2.50 (3)3.315 (3)156 (4)
O2—H21···O2D0.86 (2)1.85 (2)2.680 (3)164 (5)
O2—H22···S4iv0.87 (3)2.44 (3)3.280 (3)161 (3)
O3—H31···O1Dv0.94 (3)1.78 (3)2.693 (4)163 (3)
O3—H32···O1Cvi0.88 (3)2.02 (3)2.890 (4)170 (4)
O4—H41···S3vii0.92 (4)2.34 (3)3.240 (3)168 (3)
O4—H42···S1viii0.87 (4)2.39 (3)3.209 (3)157 (3)
O5—H51···S1ix0.93 (4)2.31 (4)3.227 (3)169 (3)
O5—H52···O11iv0.90 (3)1.80 (4)2.646 (5)155 (5)
O6—H61···O1x0.88 (2)2.01 (2)2.875 (4)165 (4)
O7—H71···O1Bxi0.88 (2)1.86 (3)2.680 (4)155 (4)
O8—H81···O9vii0.92 (3)1.74 (3)2.617 (6)158 (4)
O8—H82···S3xii0.91 (3)2.41 (3)3.251 (4)152 (4)
O9—H91···O1Cxiii0.92 (3)1.93 (3)2.744 (4)147 (4)
O9—H92···O1B0.94 (3)1.72 (3)2.611 (4)156 (4)
O10—H101···O2vi0.91 (3)1.97 (3)2.829 (4)156 (4)
O10—H102···O9iii0.90 (3)2.05 (3)2.890 (4)154 (4)
O11—H111···O1D0.91 (3)1.88 (3)2.708 (6)149 (4)
O11—H112···O1Aix0.90 (3)1.89 (3)2.788 (6)177 (4)
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x1/2, y+3/2, z; (iv) x+1/2, y+3/2, z; (v) x1/2, y1/2, z+1/2; (vi) x, y+1, z+1/2; (vii) x1/2, y+1/2, z; (viii) x+1/2, y+1/2, z; (ix) x, y+1, z1/2; (x) x+1/2, y1/2, z1/2; (xi) x+1, y+1, z1/2; (xii) x+1/2, y1/2, z+1/2; (xiii) x+1/2, y+1/2, z+1/2.
(II) Poly[µ2-aqua-tetraaqua(µ4-2-thiobarbiturato-κ4O:O:S:S)(µ2-thiobarbiturato-κ2O:S)disodium(I)] top
Crystal data top
[Na2(C4H3N2O2S)2(H2O)5]Z = 2
Mr = 422.34F(000) = 434
Triclinic, P1Dx = 1.652 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4043 (11) ÅCell parameters from 1956 reflections
b = 10.6987 (16) Åθ = 2.9–27.2°
c = 11.4837 (17) ŵ = 0.42 mm1
α = 101.175 (2)°T = 296 K
β = 106.932 (2)°Plate, pink
γ = 92.527 (2)°0.4 × 0.35 × 0.05 mm
V = 848.8 (2) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4405 independent reflections
Radiation source: fine-focus sealed tube2984 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 29.8°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1010
Tmin = 0.644, Tmax = 0.746k = 1414
8317 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.2081P]
where P = (Fo2 + 2Fc2)/3
4405 reflections(Δ/σ)max = 0.018
260 parametersΔρmax = 0.37 e Å3
8 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Na2(C4H3N2O2S)2(H2O)5]γ = 92.527 (2)°
Mr = 422.34V = 848.8 (2) Å3
Triclinic, P1Z = 2
a = 7.4043 (11) ÅMo Kα radiation
b = 10.6987 (16) ŵ = 0.42 mm1
c = 11.4837 (17) ÅT = 296 K
α = 101.175 (2)°0.4 × 0.35 × 0.05 mm
β = 106.932 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4405 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2984 reflections with I > 2σ(I)
Tmin = 0.644, Tmax = 0.746Rint = 0.030
8317 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0448 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.37 e Å3
4405 reflectionsΔρmin = 0.39 e Å3
260 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Na10.34690 (15)0.35532 (9)0.19771 (9)0.0357 (3)
Na20.02735 (14)0.16179 (9)0.22220 (9)0.0326 (2)
S10.82635 (10)0.96675 (6)0.59386 (6)0.03625 (18)
N1A0.6467 (3)0.74628 (17)0.44730 (17)0.0252 (4)
H1A0.69880.71300.50970.030*
N3A0.5996 (3)0.92165 (18)0.36094 (17)0.0283 (5)
H3A0.62281.00260.36720.034*
O1A0.4208 (3)0.91260 (16)0.16341 (15)0.0370 (5)
O2A0.5194 (2)0.54611 (15)0.33813 (16)0.0331 (4)
C2A0.6835 (3)0.8730 (2)0.4609 (2)0.0247 (5)
C4A0.4785 (3)0.8508 (2)0.2487 (2)0.0274 (5)
C5A0.4390 (3)0.7214 (2)0.2412 (2)0.0287 (5)
H5A0.35080.67180.17020.034*
C6A0.5298 (3)0.6646 (2)0.3389 (2)0.0248 (5)
S20.33107 (9)0.77119 (6)0.65418 (6)0.03047 (16)
N1B0.2163 (3)0.55448 (17)0.48373 (17)0.0247 (4)
H1B0.28260.51930.54100.030*
N3B0.0941 (3)0.73217 (18)0.42298 (17)0.0273 (4)
H3B0.08260.81270.44100.033*
O1B0.0971 (3)0.72596 (16)0.22671 (16)0.0389 (5)
O2B0.1603 (2)0.35972 (15)0.35012 (15)0.0305 (4)
C2B0.2063 (3)0.6813 (2)0.5129 (2)0.0237 (5)
C4B0.0052 (3)0.6640 (2)0.3024 (2)0.0269 (5)
C5B0.0097 (4)0.5326 (2)0.2783 (2)0.0287 (5)
H5B0.06010.48200.20140.034*
C6B0.1262 (3)0.4759 (2)0.3666 (2)0.0244 (5)
O10.2255 (3)0.13259 (18)0.12583 (17)0.0372 (4)
H110.299 (4)0.077 (3)0.157 (3)0.045*
H120.212 (4)0.105 (3)0.048 (2)0.045*
O20.1963 (3)0.05273 (18)0.13340 (18)0.0386 (5)
H210.150 (4)0.114 (2)0.168 (3)0.046*
H220.316 (3)0.052 (3)0.135 (3)0.046*
O30.2038 (3)0.23857 (19)0.05265 (17)0.0406 (5)
H310.270 (4)0.187 (3)0.017 (2)0.049*
H320.285 (4)0.296 (3)0.070 (3)0.049*
O40.0861 (3)0.3834 (2)0.01292 (18)0.0437 (5)
H410.111 (4)0.353 (3)0.058 (2)0.052*
H420.018 (4)0.336 (3)0.015 (3)0.052*
O5A0.5598 (5)0.4295 (3)0.0927 (3)0.0498 (10)0.847 (8)
O5B0.467 (2)0.3760 (14)0.0216 (14)0.036 (5)0.153 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0396 (6)0.0312 (5)0.0324 (6)0.0003 (4)0.0080 (5)0.0032 (4)
Na20.0390 (6)0.0282 (5)0.0266 (5)0.0011 (4)0.0031 (4)0.0073 (4)
S10.0508 (4)0.0218 (3)0.0236 (3)0.0037 (3)0.0061 (3)0.0041 (2)
N1A0.0328 (11)0.0192 (9)0.0198 (10)0.0002 (8)0.0014 (8)0.0061 (8)
N3A0.0392 (12)0.0167 (9)0.0218 (10)0.0008 (8)0.0014 (9)0.0044 (8)
O1A0.0511 (12)0.0257 (9)0.0249 (9)0.0038 (8)0.0047 (8)0.0089 (7)
O2A0.0399 (10)0.0187 (8)0.0329 (10)0.0009 (7)0.0001 (8)0.0056 (7)
C2A0.0275 (12)0.0225 (11)0.0220 (11)0.0030 (9)0.0046 (9)0.0046 (9)
C4A0.0296 (13)0.0251 (12)0.0236 (12)0.0043 (10)0.0012 (10)0.0066 (10)
C5A0.0342 (13)0.0209 (11)0.0225 (12)0.0013 (10)0.0027 (10)0.0034 (9)
C6A0.0258 (12)0.0217 (11)0.0244 (12)0.0011 (9)0.0049 (9)0.0036 (9)
S20.0388 (4)0.0215 (3)0.0236 (3)0.0031 (2)0.0008 (3)0.0007 (2)
N1B0.0313 (11)0.0188 (9)0.0208 (10)0.0025 (8)0.0025 (8)0.0054 (7)
N3B0.0350 (12)0.0187 (10)0.0245 (10)0.0065 (8)0.0032 (9)0.0039 (8)
O1B0.0515 (12)0.0298 (10)0.0278 (10)0.0133 (9)0.0015 (8)0.0072 (8)
O2B0.0418 (10)0.0178 (8)0.0268 (9)0.0035 (7)0.0032 (8)0.0038 (7)
C2B0.0280 (12)0.0197 (11)0.0228 (11)0.0014 (9)0.0073 (9)0.0038 (9)
C4B0.0312 (13)0.0251 (12)0.0218 (12)0.0045 (10)0.0042 (10)0.0046 (9)
C5B0.0355 (14)0.0232 (12)0.0212 (12)0.0020 (10)0.0016 (10)0.0016 (9)
C6B0.0299 (13)0.0199 (11)0.0230 (12)0.0005 (9)0.0087 (10)0.0030 (9)
O10.0483 (12)0.0322 (10)0.0288 (10)0.0134 (9)0.0068 (9)0.0065 (8)
O20.0446 (12)0.0334 (10)0.0350 (10)0.0040 (9)0.0054 (9)0.0108 (8)
O30.0468 (12)0.0368 (11)0.0268 (10)0.0068 (9)0.0037 (9)0.0027 (8)
O40.0532 (13)0.0445 (12)0.0330 (11)0.0073 (10)0.0119 (10)0.0088 (9)
O5A0.0484 (19)0.0579 (19)0.043 (2)0.0058 (15)0.0159 (16)0.0085 (15)
O5B0.026 (8)0.051 (9)0.028 (9)0.012 (6)0.012 (6)0.004 (7)
Geometric parameters (Å, º) top
Na1—O2A2.3860 (19)C5A—C6A1.393 (3)
Na1—O12.405 (2)C5A—H5A0.9300
Na1—O5A2.437 (3)S2—C2B1.690 (2)
Na1—O5B2.477 (12)S2—Na2ii3.0322 (13)
Na1—O42.497 (2)S2—Na1i3.0373 (12)
Na1—O2B2.521 (2)N1B—C2B1.343 (3)
Na1—S2i3.0372 (12)N1B—C6B1.396 (3)
Na2—O32.325 (2)N1B—H1B0.8600
Na2—O2B2.4327 (18)N3B—C2B1.345 (3)
Na2—O12.440 (2)N3B—C4B1.400 (3)
Na2—O22.443 (2)N3B—H3B0.8600
Na2—S1i2.8360 (11)O1B—C4B1.255 (3)
Na2—S2ii3.0322 (13)O2B—C6B1.269 (3)
Na1—C6B3.026 (2)C4B—C5B1.395 (3)
Na1—Na23.4955 (15)C5B—C6B1.383 (3)
S1—C2A1.682 (2)C5B—H5B0.9300
S1—Na2i2.8361 (11)O1—H110.88 (2)
N1A—C2A1.340 (3)O1—H120.86 (2)
N1A—C6A1.395 (3)O2—H210.86 (2)
N1A—H1A0.8600O2—H220.89 (2)
N3A—C2A1.349 (3)O3—H310.87 (2)
N3A—C4A1.388 (3)O3—H320.91 (2)
N3A—H3A0.8600O4—H410.90 (2)
O1A—C4A1.269 (3)O4—H420.91 (2)
O2A—C6A1.265 (3)O5A—O5B0.960 (14)
C4A—C5A1.383 (3)
O2A—Na1—O1158.19 (7)C2A—N3A—C4A124.9 (2)
O2A—Na1—O5A75.67 (10)C2A—N3A—H3A117.6
O1—Na1—O5A115.06 (10)C4A—N3A—H3A117.6
O2A—Na1—O5B96.8 (4)C6A—O2A—Na1136.34 (15)
O1—Na1—O5B97.4 (4)N1A—C2A—N3A116.0 (2)
O5A—Na1—O5B22.5 (3)N1A—C2A—S1122.50 (17)
O2A—Na1—O4116.69 (7)N3A—C2A—S1121.49 (17)
O1—Na1—O483.99 (7)O1A—C4A—C5A127.5 (2)
O5A—Na1—O485.36 (10)O1A—C4A—N3A115.6 (2)
O5B—Na1—O468.5 (3)C5A—C4A—N3A116.8 (2)
O2A—Na1—O2B84.60 (6)C4A—C5A—C6A120.7 (2)
O1—Na1—O2B85.42 (7)C4A—C5A—H5A119.6
O5A—Na1—O2B159.48 (10)C6A—C5A—H5A119.6
O5B—Na1—O2B166.4 (3)O2A—C6A—C5A126.4 (2)
O4—Na1—O2B98.78 (7)O2A—C6A—N1A116.8 (2)
O2A—Na1—C6B68.69 (7)C5A—C6A—N1A116.8 (2)
O1—Na1—C6B106.86 (7)C2B—S2—Na2ii103.23 (9)
O5A—Na1—C6B136.90 (9)C2B—S2—Na1i114.63 (8)
O5B—Na1—C6B145.4 (3)Na2ii—S2—Na1i114.80 (3)
O4—Na1—C6B89.55 (7)C2B—N1B—C6B124.38 (19)
O2B—Na1—C6B24.33 (5)C2B—N1B—H1B117.8
O2A—Na1—S2i82.99 (5)C6B—N1B—H1B117.8
O1—Na1—S2i78.46 (5)C2B—N3B—C4B124.9 (2)
O5A—Na1—S2i89.05 (8)C2B—N3B—H3B117.5
O5B—Na1—S2i99.4 (3)C4B—N3B—H3B117.5
O4—Na1—S2i157.25 (6)C6B—O2B—Na2133.06 (15)
O2B—Na1—S2i94.17 (5)C6B—O2B—Na1100.74 (14)
C6B—Na1—S2i109.26 (6)Na2—O2B—Na189.73 (6)
O2A—Na1—Na2128.69 (6)N1B—C2B—N3B116.3 (2)
O1—Na1—Na244.21 (5)N1B—C2B—S2121.42 (17)
O5A—Na1—Na2155.32 (10)N3B—C2B—S2122.27 (17)
O5B—Na1—Na2133.1 (4)O1B—C4B—C5B126.5 (2)
O4—Na1—Na279.64 (6)O1B—C4B—N3B117.6 (2)
O2B—Na1—Na244.10 (4)C5B—C4B—N3B115.9 (2)
C6B—Na1—Na262.91 (5)C6B—C5B—C4B121.4 (2)
S2i—Na1—Na297.25 (3)C6B—C5B—H5B119.3
O3—Na2—O2B99.69 (7)C4B—C5B—H5B119.3
O3—Na2—O189.34 (8)O2B—C6B—C5B125.9 (2)
O2B—Na2—O186.64 (7)O2B—C6B—N1B117.2 (2)
O3—Na2—O291.54 (7)C5B—C6B—N1B116.9 (2)
O2B—Na2—O2168.25 (7)O2B—C6B—Na154.94 (12)
O1—Na2—O296.99 (8)C5B—C6B—Na194.78 (15)
O3—Na2—S1i171.86 (7)N1B—C6B—Na1121.96 (15)
O2B—Na2—S1i88.03 (5)Na1—O1—Na292.36 (7)
O1—Na2—S1i88.57 (5)Na1—O1—H11117.0 (19)
O2—Na2—S1i80.91 (5)Na2—O1—H11110.0 (19)
O3—Na2—S2ii88.41 (6)Na1—O1—H12112 (2)
O2B—Na2—S2ii88.09 (5)Na2—O1—H12127 (2)
O1—Na2—S2ii173.84 (6)H11—O1—H12100 (3)
O2—Na2—S2ii88.80 (6)Na2—O2—H21117 (2)
S1i—Na2—S2ii94.44 (3)Na2—O2—H22110 (2)
O3—Na2—Na183.38 (6)H21—O2—H22107 (3)
O2B—Na2—Na146.16 (5)Na2—O3—H31121 (2)
O1—Na2—Na143.43 (5)Na2—O3—H32114.6 (19)
O2—Na2—Na1139.90 (6)H31—O3—H32105 (3)
S1i—Na2—Na1100.41 (4)Na1—O4—H41112 (2)
S2ii—Na2—Na1130.54 (4)Na1—O4—H42105.1 (19)
C2A—S1—Na2i116.14 (8)H41—O4—H42109 (3)
C2A—N1A—C6A124.57 (19)O5B—O5A—Na181.1 (7)
C2A—N1A—H1A117.7O5A—O5B—Na176.4 (8)
C6A—N1A—H1A117.7
O2A—Na1—Na2—O3111.97 (8)O5B—Na1—O2B—C6B49.2 (16)
O1—Na1—Na2—O396.07 (9)O4—Na1—O2B—C6B68.85 (15)
O5A—Na1—Na2—O357.53 (19)S2i—Na1—O2B—C6B129.92 (13)
O5B—Na1—Na2—O351.1 (4)Na2—Na1—O2B—C6B133.96 (16)
O4—Na1—Na2—O34.04 (7)O2A—Na1—O2B—Na2178.67 (6)
O2B—Na1—Na2—O3110.27 (8)O1—Na1—O2B—Na218.08 (6)
C6B—Na1—Na2—O390.81 (8)O5A—Na1—O2B—Na2165.4 (3)
S2i—Na1—Na2—O3161.23 (6)O5B—Na1—O2B—Na284.7 (16)
O2A—Na1—Na2—O2B1.70 (8)O4—Na1—O2B—Na265.11 (7)
O1—Na1—Na2—O2B153.66 (9)C6B—Na1—O2B—Na2133.96 (16)
O5A—Na1—Na2—O2B167.80 (19)S2i—Na1—O2B—Na296.13 (5)
O5B—Na1—Na2—O2B161.4 (4)C6B—N1B—C2B—N3B3.1 (3)
O4—Na1—Na2—O2B114.31 (8)C6B—N1B—C2B—S2175.98 (18)
C6B—Na1—Na2—O2B19.45 (7)C4B—N3B—C2B—N1B2.4 (3)
S2i—Na1—Na2—O2B88.50 (6)C4B—N3B—C2B—S2176.70 (19)
O2A—Na1—Na2—O1151.96 (10)Na2ii—S2—C2B—N1B108.88 (19)
O5A—Na1—Na2—O138.54 (19)Na1i—S2—C2B—N1B16.7 (2)
O5B—Na1—Na2—O145.0 (4)Na2ii—S2—C2B—N3B72.1 (2)
O4—Na1—Na2—O192.03 (9)Na1i—S2—C2B—N3B162.31 (17)
O2B—Na1—Na2—O1153.66 (9)C2B—N3B—C4B—O1B176.6 (2)
C6B—Na1—Na2—O1173.12 (9)C2B—N3B—C4B—C5B2.9 (4)
S2i—Na1—Na2—O165.16 (7)O1B—C4B—C5B—C6B175.4 (2)
O2A—Na1—Na2—O2163.53 (10)N3B—C4B—C5B—C6B4.1 (4)
O1—Na1—Na2—O211.57 (10)Na2—O2B—C6B—C5B32.3 (4)
O5A—Na1—Na2—O227.0 (2)Na1—O2B—C6B—C5B67.6 (3)
O5B—Na1—Na2—O233.4 (4)Na2—O2B—C6B—N1B148.69 (16)
O4—Na1—Na2—O280.46 (10)Na1—O2B—C6B—N1B111.48 (19)
O2B—Na1—Na2—O2165.23 (10)Na2—O2B—C6B—Na199.83 (18)
C6B—Na1—Na2—O2175.32 (10)C4B—C5B—C6B—O2B174.2 (2)
S2i—Na1—Na2—O276.72 (9)C4B—C5B—C6B—N1B4.8 (4)
O2A—Na1—Na2—S1i75.31 (7)C4B—C5B—C6B—Na1124.8 (2)
O1—Na1—Na2—S1i76.65 (7)C2B—N1B—C6B—O2B174.7 (2)
O5A—Na1—Na2—S1i115.19 (18)C2B—N1B—C6B—C5B4.4 (3)
O5B—Na1—Na2—S1i121.6 (4)C2B—N1B—C6B—Na1110.9 (2)
O4—Na1—Na2—S1i168.67 (6)O2A—Na1—C6B—O2B128.16 (15)
O2B—Na1—Na2—S1i77.02 (6)O1—Na1—C6B—O2B29.23 (15)
C6B—Na1—Na2—S1i96.47 (6)O5A—Na1—C6B—O2B164.47 (17)
S2i—Na1—Na2—S1i11.49 (4)O5B—Na1—C6B—O2B161.8 (7)
O2A—Na1—Na2—S2ii29.79 (9)O4—Na1—C6B—O2B112.82 (14)
O1—Na1—Na2—S2ii178.25 (8)S2i—Na1—C6B—O2B54.13 (14)
O5A—Na1—Na2—S2ii139.71 (17)Na2—Na1—C6B—O2B34.24 (12)
O5B—Na1—Na2—S2ii133.3 (4)O2A—Na1—C6B—C5B100.57 (15)
O4—Na1—Na2—S2ii86.22 (7)O1—Na1—C6B—C5B102.04 (15)
O2B—Na1—Na2—S2ii28.09 (7)O5A—Na1—C6B—C5B64.3 (2)
C6B—Na1—Na2—S2ii8.63 (6)O5B—Na1—C6B—C5B30.5 (7)
S2i—Na1—Na2—S2ii116.59 (5)O4—Na1—C6B—C5B18.46 (15)
O1—Na1—O2A—C6A170.0 (2)O2B—Na1—C6B—C5B131.3 (2)
O5A—Na1—O2A—C6A67.4 (2)S2i—Na1—C6B—C5B174.60 (13)
O5B—Na1—O2A—C6A59.6 (4)Na2—Na1—C6B—C5B97.03 (14)
O4—Na1—O2A—C6A9.8 (3)O2A—Na1—C6B—N1B25.38 (16)
O2B—Na1—O2A—C6A106.9 (2)O1—Na1—C6B—N1B132.01 (16)
C6B—Na1—O2A—C6A87.9 (2)O5A—Na1—C6B—N1B61.7 (2)
S2i—Na1—O2A—C6A158.2 (2)O5B—Na1—C6B—N1B95.4 (7)
Na2—Na1—O2A—C6A108.1 (2)O4—Na1—C6B—N1B144.41 (17)
C6A—N1A—C2A—N3A0.1 (4)O2B—Na1—C6B—N1B102.8 (2)
C6A—N1A—C2A—S1179.80 (18)S2i—Na1—C6B—N1B48.65 (17)
C4A—N3A—C2A—N1A1.1 (4)Na2—Na1—C6B—N1B137.02 (17)
C4A—N3A—C2A—S1179.25 (19)O2A—Na1—O1—Na281.0 (2)
Na2i—S1—C2A—N1A8.2 (2)O5A—Na1—O1—Na2163.31 (9)
Na2i—S1—C2A—N3A171.47 (17)O5B—Na1—O1—Na2148.6 (3)
C2A—N3A—C4A—O1A176.7 (2)O4—Na1—O1—Na281.30 (7)
C2A—N3A—C4A—C5A1.5 (4)O2B—Na1—O1—Na218.05 (6)
O1A—C4A—C5A—C6A172.9 (2)C6B—Na1—O1—Na26.40 (8)
N3A—C4A—C5A—C6A5.1 (4)S2i—Na1—O1—Na2113.25 (6)
Na1—O2A—C6A—C5A4.8 (4)O3—Na2—O1—Na181.05 (8)
Na1—O2A—C6A—N1A176.60 (15)O2B—Na2—O1—Na118.70 (7)
C4A—C5A—C6A—O2A172.7 (2)O2—Na2—O1—Na1172.52 (7)
C4A—C5A—C6A—N1A5.9 (4)S1i—Na2—O1—Na1106.81 (6)
C2A—N1A—C6A—O2A175.5 (2)S2ii—Na2—O1—Na112.5 (6)
C2A—N1A—C6A—C5A3.3 (4)O2A—Na1—O5A—O5B159.2 (8)
O3—Na2—O2B—C6B33.6 (2)O1—Na1—O5A—O5B41.0 (8)
O1—Na2—O2B—C6B122.3 (2)O4—Na1—O5A—O5B40.1 (8)
O2—Na2—O2B—C6B129.2 (4)O2B—Na1—O5A—O5B142.8 (8)
S1i—Na2—O2B—C6B149.0 (2)C6B—Na1—O5A—O5B124.5 (8)
S2ii—Na2—O2B—C6B54.5 (2)S2i—Na1—O5A—O5B117.8 (8)
Na1—Na2—O2B—C6B104.5 (2)Na2—Na1—O5A—O5B12.3 (9)
O3—Na2—O2B—Na170.96 (8)O2A—Na1—O5B—O5A20.3 (8)
O1—Na2—O2B—Na117.79 (6)O1—Na1—O5B—O5A143.2 (8)
O2—Na2—O2B—Na1126.2 (4)O4—Na1—O5B—O5A136.3 (9)
S1i—Na2—O2B—Na1106.47 (5)O2B—Na1—O5B—O5A115.4 (14)
S2ii—Na2—O2B—Na1159.02 (5)C6B—Na1—O5B—O5A82.1 (10)
O2A—Na1—O2B—C6B47.38 (14)S2i—Na1—O5B—O5A63.7 (8)
O1—Na1—O2B—C6B152.04 (14)Na2—Na1—O5B—O5A173.0 (5)
O5A—Na1—O2B—C6B31.5 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O2Bi0.861.972.823 (3)175
N1B—H1B···O2Ai0.861.962.806 (3)167
O1—H11···O1Aiii0.86 (3)2.03 (3)2.857 (3)162 (3)
O1—H12···O2iv0.87 (2)2.01 (2)2.874 (3)176 (3)
O2—H21···O1Biii0.88 (3)1.96 (3)2.822 (3)165 (4)
O2—H22···O1Av0.89 (2)2.12 (3)2.970 (3)166 (3)
O3—H31···O1Avi0.89 (2)1.81 (2)2.691 (3)174 (3)
O3—H32···O5Avii0.90 (3)1.91 (3)2.801 (4)169 (3)
O4—H41···O1Bvi0.91 (3)1.93 (2)2.798 (3)168 (3)
O4—H42···O30.91 (3)1.89 (3)2.784 (4)165 (3)
N3A—H3A···S2viii0.862.503.349 (2)170
N3B—H3B···S1viii0.862.563.302 (2)145
Symmetry codes: (i) x+1, y+1, z+1; (iii) x, y1, z; (iv) x, y, z; (v) x1, y1, z; (vi) x, y+1, z; (vii) x1, y, z; (viii) x+1, y+2, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[Li4(C4H3N2O2S)4(H2O)9]·2H2O[Na2(C4H3N2O2S)2(H2O)5]
Mr798.51422.34
Crystal system, space groupOrthorhombic, Pna21Triclinic, P1
Temperature (K)296296
a, b, c (Å)18.1669 (16), 7.2059 (6), 26.435 (2)7.4043 (11), 10.6987 (16), 11.4837 (17)
α, β, γ (°)90, 90, 90101.175 (2), 106.932 (2), 92.527 (2)
V3)3460.6 (5)848.8 (2)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.360.42
Crystal size (mm)0.5 × 0.1 × 0.050.4 × 0.35 × 0.05
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Bruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Multi-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.628, 0.7460.644, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
31550, 9173, 7512 8317, 4405, 2984
Rint0.0370.030
(sin θ/λ)max1)0.6970.700
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.146, 1.03 0.044, 0.119, 1.05
No. of reflections91734405
No. of parameters526260
No. of restraints388
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.12, 0.420.37, 0.39
Absolute structureFlack (1983), with 4988 Friedel pairs?
Absolute structure parameter0.05 (6)?

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005), publCIF (Westrip, 2010).

Selected bond lengths (Å) for (I) top
Li1—O2B1.959 (6)Li3—O71.944 (6)
Li1—O21.972 (6)Li3—O61.947 (8)
Li1—O2C1.993 (6)Li3—O51.964 (9)
Li1—O42.109 (6)Li3—O1C1.969 (6)
Li2—O2A1.980 (6)Li4—O81.895 (7)
Li2—O11.995 (6)Li4—O1A1.919 (6)
Li2—O2D1.995 (7)Li4—O101.930 (9)
Li2—O42.112 (6)Li4—O32.001 (7)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···S40.862.5523.408 (3)174.01
N3A—H3A···O30.862.0422.870 (4)161.45
N1B—H1B···O2C0.861.8962.721 (4)160.40
N3B—H3B···O5i0.862.1052.931 (4)161.02
N1C—H1C···S20.862.5483.408 (3)177.88
N3C—H3C···O70.862.1742.931 (4)146.65
N1D—H1D···O2A0.861.9372.762 (4)160.33
N3D—H3D···O8ii0.862.1362.976 (4)165.27
O1—H11···O2B0.881 (14)1.857 (2)2.685 (3)156 (5)
O1—H12···S2iii0.87 (3)2.50 (3)3.315 (3)156 (4)
O2—H21···O2D0.86 (2)1.85 (2)2.680 (3)164 (5)
O2—H22···S4iv0.87 (3)2.44 (3)3.280 (3)161 (3)
O3—H31···O1Dv0.94 (3)1.78 (3)2.693 (4)163 (3)
O3—H32···O1Cvi0.88 (3)2.02 (3)2.890 (4)170 (4)
O4—H41···S3vii0.92 (4)2.34 (3)3.240 (3)168 (3)
O4—H42···S1viii0.87 (4)2.39 (3)3.209 (3)157 (3)
O5—H51···S1ix0.93 (4)2.31 (4)3.227 (3)169 (3)
O5—H52···O11iv0.90 (3)1.80 (4)2.646 (5)155 (5)
O6—H61···O1x0.88 (2)2.013 (19)2.875 (4)165 (4)
O7—H71···O1Bxi0.88 (2)1.86 (3)2.680 (4)155 (4)
O8—H81···O9vii0.92 (3)1.74 (3)2.617 (6)158 (4)
O8—H82···S3xii0.91 (3)2.41 (3)3.251 (4)152 (4)
O9—H91···O1Cxiii0.92 (3)1.93 (3)2.744 (4)147 (4)
O9—H92···O1B0.94 (3)1.72 (3)2.611 (4)156 (4)
O10—H101···O2vi0.91 (3)1.97 (3)2.829 (4)156 (4)
O10—H102···O9iii0.90 (3)2.05 (3)2.890 (4)154 (4)
O11—H111···O1D0.91 (3)1.88 (3)2.708 (6)149 (4)
O11—H112···O1Aix0.90 (3)1.89 (3)2.788 (6)177 (4)
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x1/2, y+3/2, z; (iv) x+1/2, y+3/2, z; (v) x1/2, y1/2, z+1/2; (vi) x, y+1, z+1/2; (vii) x1/2, y+1/2, z; (viii) x+1/2, y+1/2, z; (ix) x, y+1, z1/2; (x) x+1/2, y1/2, z1/2; (xi) x+1, y+1, z1/2; (xii) x+1/2, y1/2, z+1/2; (xiii) x+1/2, y+1/2, z+1/2.
Selected bond lengths (Å) for (II) top
Na1—O2A2.3860 (19)Na2—O32.325 (2)
Na1—O12.405 (2)Na2—O2B2.4327 (18)
Na1—O5A2.437 (3)Na2—O12.440 (2)
Na1—O5B2.477 (12)Na2—O22.443 (2)
Na1—O42.497 (2)Na2—S1i2.8360 (11)
Na1—O2B2.521 (2)Na2—S2ii3.0322 (13)
Na1—S2i3.0372 (12)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O2Bi0.861.972.823 (3)175
N1B—H1B···O2Ai0.861.962.806 (3)167
O1—H11···O1Aiii0.86 (3)2.03 (3)2.857 (3)162 (3)
O1—H12···O2iv0.87 (2)2.01 (2)2.874 (3)176 (3)
O2—H21···O1Biii0.88 (3)1.96 (3)2.822 (3)165 (4)
O2—H22···O1Av0.89 (2)2.12 (3)2.970 (3)166 (3)
O3—H31···O1Avi0.89 (2)1.81 (2)2.691 (3)174 (3)
O3—H32···O5Avii0.90 (3)1.91 (3)2.801 (4)169 (3)
O4—H41···O1Bvi0.91 (3)1.93 (2)2.798 (3)168 (3)
O4—H42···O30.91 (3)1.89 (3)2.784 (4)165 (3)
N3A—H3A···S2viii0.862.4983.349 (2)170.26
N3B—H3B···S1viii0.862.5633.302 (2)144.64
Symmetry codes: (i) x+1, y+1, z+1; (iii) x, y1, z; (iv) x, y, z; (v) x1, y1, z; (vi) x, y+1, z; (vii) x1, y, z; (viii) x+1, y+2, z+1.
Geometric parameters of the ππ stacking synthon for (I) top
CgI/CgJCgI···CgJ (Å)α (°)β (°)γ (°)CgJ_p (Å)Shift (Å)
Cg1···Cg2i3.587 (2)5.0 (1)9.748.623.546 (1)0.541
Cg1···Cg2ii3.764 (2)5.0 (1)18.5023.343.456 (1)1.491
Cg3···Cg4i3.486 (2)3.3 (1)9.326.743.462 (1)0.408
Cg3···Cg4ii3.850 (2)3.3 (1)23.3024.063.516 (1)1.569
Notes: Cg1 is the centroid of the N1A/C2A/N3A/C4A–C6A ring, Cg2 is the centroid of the N1B/C2B/N3B/C4B–C6B ring, Cg3 is the centroid of the N1C/C2C/N3C/C4C–C6C ring and Cg4 is the centroid of the N1D/C2D/N3D/C4D–C6D ring.

Symmetry codes: (i) x - 1/2, -y + 1/2, z; (ii) x - 1/2, -y + 3/2, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds