Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
BaBrCl:Eu is a promising scintillator material; however, the crystal growth yield must be improved for it to become commercially viable. This study measures strain accumulations in the crystal lattice which can contribute to cracking during post-growth cooling. Neutron diffraction is used to measure the crystal structure of undoped and 5 mol% europium-doped BaBrCl from 303 to 1073 K, approaching the melting point. Rietveld analysis of these data provides the temperature dependence of the thermal and chemical strain in BaBrCl. In particular, anisotropic thermal expansion is measured, with expansion along the b axis nearly double the expansion along the a and c axes. Additionally, the chemical strain from the incorporation of europium atoms peaks around 673 K, explaining cracking frequently observed in that temperature range.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds