Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Neutron diffraction line profile analysis (DLPA) and transmission electron microscopy were used to characterize the components of the bimodal microstructure of Zr-Excel (Zr–3.5Sn–0.8Mo–0.8Nb), a nuclear structural material. The dual microstructure, consisting of equiaxed primary grains and martensitic domains both having hexagonal close-packed (h.c.p.) α crystal structure, forms when the as-received Zr-Excel alloy is heat treated at a high temperature and subsequently quenched, i.e. is solution treated. Because both microstructure components have the same crystal structure the reflections from the two components overlap significantly. The article presents how the multi-phase analysis capability of modern DLPA methods can be used to model the measured neutron diffraction patterns as the sum of two sub-patterns corresponding to the components of such a bimodal microstructure, which can be found in many hexagonal alloys relevant for industrial applications. The results show that the large equiaxed primary h.c.p. α grains have a highly correlated low-density dislocation structure and large sub-grains (∼300 nm), while the large martensitic domains have a randomly arranged very high density dislocation structure and sub-grains the size of ∼30 nm. The significantly different defect structures of the primary and martensitic phases manifest as large differences in the hardness and ductility of the individual components. As a result of this duality of the mechanical properties, solution-treated Zr-Excel materials can be considered as analogous to metal matrix composites where a softer ductile matrix contains a harder brittle reinforcing phase.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds