Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
First-principles calculations have been used to determine the equation of state and structural properties of NiSi up to pressures equivalent to that in the Earth's inner core. At atmospheric pressure, the thermodynamically stable phase is that with the MnP structure (as found experimentally). At high pressures, NiSi shows phase transformations to a number of high-pressure polymorphs. For pressures greater than ∼250 GPa, the thermodynamically stable phase of NiSi is that with the CsCl structure, which persists to the highest pressures simulated (∼500 GPa). At the pressures of the Earth's inner core, therefore, NiSi and FeSi will be isostructural and thus are likely to form a solid solution. The density contrast between NiSi and FeSi at inner-core pressures is ∼6%, with NiSi being the denser phase. Therefore, if a CsCl-structured (Fe,Ni)Si alloy were present in the inner core, its density (for the commonly assumed nickel content) might be expected to be ∼1% greater than that of pure FeSi.

Supporting information

txt

Text file https://doi.org/10.1107/S0021889812000337/ks5298sup1.txt
Cell parameters and atomic coordinates shown in Figs. 2(a) and 5

txt

Text file https://doi.org/10.1107/S0021889812000337/ks5298sup2.txt
Cell parameters and atomic coordinates shown in Figs. 2(a) and 10

txt

Text file https://doi.org/10.1107/S0021889812000337/ks5298sup3.txt
Cell parameters and atomic coordinates shown in Figs. 2(b) and 9


Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds