Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The method of in situ time-resolved high-energy X-ray diffraction, using the intrinsically highly collimated X-ray beam generated by the European Synchrotron Radiation Facility, is demonstrated. A specially designed cell, which allows the addition of liquid components, has been used to study the reaction mechanisms of a foamed bioactive calcia-silica sol-gel glass immersed in simulated body fluid. Analysis of the X-ray diffraction data from this experiment provides atomic distances, via the pair correlation functions, at different stages of the dissolution of the glass and of the associated calcium phosphate, and ultimately hydroxyapatite, i.e. bone mineral, formation. Hence, changes in the atomic scale structure can be analysed as a function of reaction time, giving an insight into the evolution of the structure of both the glass matrix and the hydroxyapatite surface growth.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds