Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A low-resolution ab initio shape determination was performed from small-angle neutron and X-ray scattering (SANS and SAXS) curves from solutions of polycarbosilane dendrimers with the three-functional and the four-functional branching centre of the fourth, fifth, sixth, seventh and eighth generations. In all cases, anisometric dendrimer shapes were obtained. The overall shapes of the dendrimers with the three- and four-functional branching centres were oblate ellipsoids of revolution and triaxial ellipsoids, respectively. The restored bead models revealed a pronounced heterogeneity within the dendrimer structure. The density deficit was observed in the central part and close to the periphery of the dendrimers. The fraction of the overall volume of the dendrimers available for solvent penetration was about 0.2-0.3. These results may help in the design of new practical applications of dendrimer macromolecules.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds