Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
This article discusses the potential problems and currently available solutions in modeling powder-diffraction-based pair distribution function (PDF) data from systems where morphological feature information content includes distances in the nanometre length scale, such as finite nanoparticles, nanoporous networks and nanoscale precipitates in bulk materials. The implications of an experimental finite minimum Q value are reviewed by simulation, which also demonstrates the advantages of combining PDF data with small-angle scattering data. A simple Fortran90 code, DShaper, is introduced, which may be incorporated into PDF data fitting routines in order to approximate the so-called `shape function' for any atomistic model.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds