Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In situ synchrotron studies of structure and phase formation dynamics in mechanically activated (t = 7 min, power density 40 g) and mechanically activated with subsequent irradiation by γ-quanta 60Co powder mixture (Ti 64 wt% + Al) during high-temperature synthesis by the method of thermal explosion using induction heating are described. In situ high-temperature synthesis was carried out on the created experimental complex adapted for synchrotron X-ray diffraction methods. The sequence of formation and time–temperature interval of the metastable and main phases were determined. The impact of preliminary mechanical activation and of γ-irradiation on the macrokinetic parameters of the synthesis were studied experimentally in situ. It has been established that the impact of γ-irradiation on the mechanically activated powder mixture of the composition Ti 64 wt% + Al leads to a change in the thermal parameters of combustion: the maximum synthesis temperature and the burning rate decrease. The heating rate for the non-irradiated mixture is 204.8 K s−1 and that for the irradiated mixture is 81.6 K s−1. The dependences of mass fractions of the synthesized compounds on time and temperature were calculated from the stage of preheating until completion of the thermal explosion. A single-phase equilibrium product of the composition γ-(TiAl) is formed in γ-irradiated mechanically activated mixture when the system reaches maximum temperature. The synthesized product of the mechanically activated mixture without γ-irradiation contains 72% γ-(TiAl); TiAl3 (26%) and residual Ti (2%) are also observed.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds