Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Platinum thin films activated ex situ by oxygen plasma become reduced by the combined effect of an intense soft X-ray photon beam and condensed water. The evolution of the electronic structure of the surface has been characterized by near-ambient-pressure photoemission and mimics the inverse two-step sequence observed in the electro-oxidation of platinum, i.e. the surface-oxidized platinum species are reduced first and then the adsorbed species desorb in a second step leading to a surface dominated by metallic platinum. The comparison with measurements performed under high-vacuum conditions suggests that the reduction process is mainly induced by the reactive species generated by the radiolysis of water. When the photon flux is decreased, then the reduction process becomes slower.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S1600577519004685/il5027sup1.pdf
Figures S1, S2 and S3


Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds