Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Lattice vibrations have been investigated in TiB2, ZrB2 and HfB2 by temperature-dependent extended X-ray absorption fine structure (EXAFS) experiments. Data clearly show that the EXAFS oscillations are characterized by an anomalous behavior of the Debye-Waller factor of the transition-metal-boron pair, which is suggested to be associated with a superposition of an optical mode corresponding to phonon vibrations induced by the B sublattice and an acoustic mode corresponding to the transition-metal (TM) sublattice. Data can be interpreted as a decoupling of the metal and boron vibrations observed in these transition-metal diborides (TMB2), a mechanism that may be responsible for the significant reduction of the superconducting transition temperature observed in these systems with respect to the parent MgB2 compound. The vibrational behavior of TM-TM bonds has also been investigated to study the occurrence of anisotropy and anomalies in the lattice vibrational behavior of TM-TM bonds.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds