Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The truncated singular value decomposition (TSVD) is applied to extract the underlying 2D correlation functions from small-angle scattering patterns. The approach is tested by transforming the simulated data of ellipsoidal particles and it is shown that also in the case of anisotropic patterns (i.e. aligned ellipsoids) the derived correlation functions correspond to the theoretically predicted profiles. Furthermore, the TSVD is used to analyze the small-angle X-ray scattering patterns of colloidal dispersions of hematite spindles and magnetotactic bacteria in the presence of magnetic fields, to verify that this approach can be applied to extract model-free the scattering profiles of anisotropic scatterers from noisy data.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S205327331900891X/ib5079sup1.pdf
Comparison of the truncated singular value decomposition with the regularized indirect Fourier transform


Subscribe to Acta Crystallographica Section A: Foundations and Advances

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds