Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In bacteria and plants, dihydrodipicolinate synthase (DHDPS) plays a key role in the (S)-lysine biosynthesis pathway. DHDPS catalyzes the first step of the condensation of (S)-aspartate-β-semialdehyde and pyruvate to form an unstable compound, (4S)-4-hydroxy-2,3,4,5-tetrahydro-(2S)-dipicolinic acid. The activity of DHDPS is allosterically regulated by (S)-lysine, a feedback inhibitor. The crystal structure of DHDPS from Methanocaldococcus jannaschii (MjDHDPS) was solved by the molecular-replacement method and was refined to 2.2 Å resolution. The structure revealed that MjDHDPS forms a functional homo­tetramer, as also observed in Escherichia coli DHDPS, Thermotoga maritima DHDPS and Bacillus anthracis DHDPS. The binding-site region of MjDHDPS is essentially similar to those found in other known DHDPS structures.

Supporting information

PDB reference: dihydrodipicolinate synthase, 2yxg, r2yxgsf


Subscribe to Acta Crystallographica Section F: Structural Biology Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. F
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds