Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structure of the periplasmic/extracellular endo­nuclease I from Vibrio salmonicida has been solved to 1.5 Å resolution and, in comparison to the corresponding endo­nucleases from V. cholerae and V. vulnificus, serves as a model system for the investigation of the structural determinants involved in the temperature and NaCl adaptation of this enzyme class. The overall fold of the three enzymes is essentially similar, but the V. salmonicida endonuclease displays a significantly more positive surface potential than the other two enzymes owing to the presence of ten more Lys residues. However, if the optimum salt concentrations for the V. salmonicida and V. cholerae enzymes are taken into consideration in the electrostatic surface-potential calculation, the potentials of the two enzymes become surprisingly similar. The higher number of basic residues in the V. salmonicida protein is therefore likely to be a result, at least in part, of adaptation to the more saline habitat of V. salmonicida (seawater) than V. cholerae (brackish water). The hydrophobic core of all three enzymes is almost identical, but the V. salmonicida endonuclease has a slightly lower number of internal hydrogen bonds. This, together with repulsive forces between the basic residues on the protein surface of V. salmonicida endonuclease I and differences in the distribution of salt bridges, probably results in higher flexibility of regions of the V. salmonicida protein. This is likely to influence both the catalytic activity and the stability of the protein.

Supporting information

PDB reference: V. salmonicida endonuclease I, 2pu3, r2pu3sf


Subscribe to Acta Crystallographica Section D: Biological Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds