Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Instrumentation for stroboscopic time-resolved diffraction studies at low temperatures is described. Exciting laser light is delivered to the crystal through an optical fiber. During the diffraction experiment, fluorescence from the sample is focused onto a fiber optic bundle surrounding the laser-light fiber, and monitored by a photodiode. A rotating slotted disk produces a pulsed X-ray beam with pulse frequencies suitable for the study of molecular excited states with lifetimes of 10 µs or longer. Synchronization of the laser-pump/X-ray-probe pulses is achieved through a trigger signal from a photosensor mounted on the rotating disk, or from an X-ray sensitive photodiode inserted in the beamstop. For the study of shorter-lived species the time structure of the synchrotron beam is to be used. Equations are derived for the maximum and average fractional excited-state populations as a function of lifetime, pulse frequency and the fraction of molecules being excited by the laser pulse.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds