Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The complexation of acetate with Am(III) is studied as a function of the pH (1-6) by extended X-ray absorption fine-structure (EXAFS) spectroscopy. The molecular structure of the Am(III)-acetate complexes (coordination numbers, oxygen and carbon distances) is determined from the raw k3-weighted Am LIII-edge EXAFS spectra. The results show a continuous shift of Am(III) speciation with increasing pH value towards the complexed species. Furthermore, it is verified that acetate coordinates in a bidentate coordination mode to Am(III) (Am-C distance: 2.82 ± 0.03 Å). The EXAFS data are analyzed by iterative transformation factor analysis to further verify the chemical speciation, which is calculated on the basis of thermodynamic constants, and the used structural model. The experimental results are in very good agreement with the thermodynamic modelling.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds