Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Materials containing disordered moieties and/or amorphous or liquid-like phases or showing surface- or defect-related phenomena constitute a problem with respect to their characterization using X-ray powder diffraction (XRPD), and in many cases Raman spectroscopy can provide useful complementary information. A novel experimental setup has been designed and realized for simultaneous in situ Raman/high-resolution XRPD experiments, to take full advantage of the complementarities of the two techniques in investigating solid-state transformations under non-ambient conditions. The added value of the proposed experiment is the perfect synchronization of the two probes with the reaction coordinate and the elimination of possible bias caused by different sample holders and conditioning modes used in `in situ but separate' approaches. The setup was tested on three solid-state transformations: (i) the kinetics of the fluorene-TCNQ solid-state synthesis, (ii) the thermal swelling and degradation of stearate-hydrotalcite, and (iii) the photoinduced (2 + 2)-cyclization of (E)-furylidenoxindole. These experiments demonstrated that, even though the simultaneous Raman/XRPD experiment is more challenging than separate procedures, high-resolution XRPD and Raman data can be collected. A gas blower allows studies from room temperature to 700 K, and 100 K can be reached using a nitrogen cryostream. The flexibility of the experimental setup allows the addition of ancillary devices, such as a UV lamp used to study photoreactivity.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0021889807025113/he5371sup1.pdf
The Raman/XRPD experimental setup


Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds