Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Non-covalent interactions between protein and ligand at the active centre of glycosidases play an enormous role in catalysis. Dissection of these hydrogen-bonding networks is not merely important for an understanding of enzymatic catalysis, but is also increasingly relevant for the design of transition-state mimics, whose tautomeric state, hydrogen-bonding interactions and protonation contribute to tight binding. Here, atomic resolution (∼1 Å) analysis of a series of complexes of the 34 kDa catalytic core domain of the Bacillus agaradhaerens endoglucanase Cel5A is presented. Cel5A is a `retaining' endoglucanase which performs catalysis via the formation and subsequent breakdown of a covalent glycosyl-enzyme intermediate via oxocarbenium-ion-like transition states. Previous medium-resolution analyses of a series of enzymatic snapshots has revealed conformational changes in the substrate along the reaction coordinate (Davies et al., 1998). Here, atomic resolution analyses of the series of complexes along the pathway are presented, including the `Michaelis' complex of the unhydrolysed substrate, the covalent glycosyl-enzyme intermediate and the complex with the reaction product, cellotriose. These structures reveal intimate details of the protein–ligand interactions, including most of the carbohydrate-associated H atoms and the tautomeric state of crucial active-centre groups in the pH 5 orthorhombic crystal form and serve to illustrate the potential for atomic resolution analyses to inform strategies for enzyme inhibition.

Subscribe to Acta Crystallographica Section D: Biological Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds