Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Protein crystallization under microgravity aims at benefiting from the quasi-absence of convection and sedimentation to favor well ordered crystal nucleation and growth. The dimeric multidomain enzyme aspartyl-tRNA synthetase from Thermus thermophilus has been crystallized within dialysis reactors of the Advanced Protein Crystallization Facility in the laboratory on earth and under microgravity aboard the US Space Shuttle. A strictly comparative crystallographic analysis reveals that the crystals grown in space are superior in every respect to control crystals prepared in otherwise identical conditions on earth. They diffract X-rays more intensely and have a lower mosaicity, facilitating the process of protein structure determination. Indeed, the electron-density map calculated from diffraction data of space-grown crystals contains considerably more detail. The resulting three-dimensional structure model at 2.0 Å resolution is more accurate than that produced in parallel using the data originating from earth-grown crystals. The major differences between the structures, including the better defined amino-acid side chains and the higher order of bound water molecules, are emphasized.

Supporting information

PDB reference: space-grown aspartyl-tRNA synthetase-1, 1l0w, r1l0wsf


Subscribe to Acta Crystallographica Section D: Biological Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds