Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Third-generation hard-X-ray synchrotron radiation sources simultaneously provide both a need and an opportunity for the development of new short-wavelength optical components. The high power and power densities of the insertion-device-produced X-ray beams have forced researchers to consider what may seem like exotic approaches, such as cryogenically cooled silicon and highly perfect diamond crystals, to mitigate thermal distortions in the first optical components. Once the power has been successfully filtered while maintaining the high beam brilliance, additional specialized optical components can be inserted into the monochromatic beam that take advantage of that brilliance. This paper reviews the performance of such optical components that have been designed, fabricated and tested at the Advanced Photon Source, starting with high-heat-load components and followed by examples of several specialized devices, such as an meV resolution (in-line) monochromator, a high-energy X-ray phase retarder and a phase-zone plate with submicrometer focusing capability.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds