Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Structural data are reported for N-(2,4-diaminopteridin-6-yl)methyldibenz[b,f]azepine (PT653), an example of structure-based inhibitor design with 21-fold selectivity for Pneumocystis carinii dihydrofolate reductase (pcDHFR) relative to rat liver dihydrofolate reductase (rlDHFR). These data test the hypothesis that 2,4-diaminopteridines with a bulky N,N-diarylaminomethyl side chain at the 6-position could fit better into the larger active site of pcDHFR than into that of mammalian DHFR. The crystal structure of the ternary complex of NADPH, PT653 and pcDHFR, refined to 2.4 Å resolution, reveals that PT653 binds in a different orientation than predicted from modeling studies reported previously [Rosowsky et al. (1999), J. Med. Chem. 42, 4853-4860]. These crystal data show that the pteridine-ring plane is tilted compared with that observed in the crystal structure of the pcDHFR methotrexate (MTX) NADPH ternary complex used as a template to model PT653 binding. Also, as a result of this tilt, the dibenzoazepine ring is bound deeper into the p-­aminobenzoyl folate binding pocket of pcDHFR, thereby relieving close intermolecular contacts predicted from the modeling data. By far the most significant structural change, but more subtle in magnitude, is the ligand-induced conformational shift of 1.2 Å away from the inhibitor of residues 61-­66 in helix C. The other major effect is the unwinding of the short helical segment involving loop 47 which has a different conformation to that observed in other pcDHFR complexes [Cody et al. (1999), Biochemistry, 38, 4303-4312]. The favorable pcDHFR selectivity of PT653 could be a result of ligand-induced fit of the large hydrophobic dibenzazepine ring which occupies regions of the enzyme active site not probed by other antifolates and which take advantage of sequence and conformational differences between the structures of human and pcDHFR. These data suggest that such hydrophobic analogs could be used as lead compounds in the design of more pcDHFR-selective antifolates. Enzyme inhibition data also show that PT653 is 102-fold selective for Toxoplasma gondii (tg) DHFR relative to rlDHFR. Homology-modeling studies of the tgDHFR structure suggest that differences in ligand-binding orientation and enzyme sequence could influence the enhanced selectivity of PT653 for tgDHFR.

Supporting information

PDB reference: NADPH–PT653–pcDHFR, 1klk, r1klksf


Subscribe to Acta Crystallographica Section D: Biological Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds