Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The rational design and X-ray crystallographic analyses of two symmetrical allosteric effectors of hemoglobin (Hb) are reported. Compound design was directed by the previously solved co-crystal structure of one of the most potent allosteric effectors of Hb, 2-{4-[(3,5-dichlorophenylcarbamoyl)-methyl]-phenoxy}-2-methylpropionic acid (RSR4), which revealed two distinct binding sites for this compound in the Hb central water cavity. The primary binding site has been observed for all compounds of this structural class, which stabilize deoxy Hb by engaging in inter-dimer contacts with three of the four protein subunits. Interactions at the secondary binding site of RSR4 occur primarily between the β1 and β2 subunits and serve to further constrain the deoxy state. Based on these observations, it was hypothesized that compounds with the ability to simultaneously span and link both of these sites would possess increased potency, but at a lower molar concentration than RSR4. Two symmetrical compounds were designed and synthesized based on this hypothesis. The symmetrical effector approach was taken to minimize the number of compound orientations needed to successfully bind at either of the distinct allosteric sites. X-ray crystallographic analyses of these two effectors in complex with Hb revealed that they successfully spanned the RSR4 primary and secondary binding sites. However, the designed compounds interacted with the secondary binding site in such a way that intra-dimer, as opposed to inter-dimer, interactions were generated. In agreement with these observations, in vitro evaluation of the symmetrical effectors in Hb solution indicated that neither compound possessed the potency of RSR4. A detailed analysis of symmetrical effector–Hb contacts and comparisons with the binding contacts of RSR4 are discussed.

Supporting information

PDB reference: TB5-27–Hb, 1k0y, r1k0ysf


Subscribe to Acta Crystallographica Section D: Biological Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds