Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Human complement component C5 has been crystallized using a low-salt batch technique. The crystals are large hexagonal bi-pyramids often larger than 1.5 mm. Although these crystals were grown in low salt (0.1 M NaCl), they are remarkably stable for at least 2 months at 281 K and they are not dissolved in aqueous buffers containing up to 2 M sodium chloride. The space group is P3121 or P3221, and the cell parameters were determined to be a = 144.9, b = 144.9, c = 243.1 Å; α = 90°, β = 90, γ = 120°. At room temperature and cryo-temperatures the crystals diffract at best to 6 Å using rotating-anode X-ray sources. Using synchrotron radiation with cryoprotection using 40%(v/v) PEG 400 the resolution limit can be extended to 3.3 Å. In both cases the crystals show significant anisotropy, with relatively weaker reflections at higher resolution in the a*b* plane.

Subscribe to Acta Crystallographica Section D: Biological Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds