Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
To meet the challenges in resolving the complex morphologies of emergent nanoparticles, a program with a user-friendly graphical user interface has been developed for calculating small-angle scattering curves from custom shapes. The software allows STL-format 3D models, models defined by mathematical functions or combinations of the two as initial input. As a transitional stage, lattice models are generated and the orientation-averaged small-angle scattering data can be calculated using typical spherical harmonics expansion. The validity of the protocol is verified by demonstration models with Protein Data Bank structures and known scattering functions. The software is applied to successfully calculate the scattering curves of a porous spherical shell model where traditional mathematical derivation fails.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S1600576722003600/ge5114sup1.pdf
Supplementary material


Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds