Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
There is a need to characterize nanoscale molecular orientation in soft materials, and polarized scattering is a powerful means to measure this property. However, few approaches have been demonstrated that quantitatively relate orientation to scattering. Here, a modeling framework to relate the molecular orientation of nanostructures to polarized resonant soft X-ray scattering measurements is developed. A variable-angle transmission measurement called critical-dimension X-ray scattering enables the characterization of the three-dimensional shape of periodic nanostructures. When this measurement is conducted at resonant soft X-ray energies with different polarizations to measure soft material nanostructures, the scattering contains convolved information about the nanostructure shape and the preferred molecular orientation as a function of position, which is extracted by fitting using inverse iterative algorithms. A computationally efficient Born approximation simulation of the scattering has been developed, with a full tensor treatment of the electric field that takes into account biaxial molecular orientation, and this approach is validated by comparing it with a rigorous coupled wave simulation. The ability of various sample models to generate unique best fit solutions is then analyzed by generating simulated scattering pattern sets and fitting them with an inverse iterative algorithm. The interaction of the measurement geometry and the change in orientation across a periodic repeat unit leads to distinct asymmetry in the scattering pattern which must be considered for an accurate fit of the scattering.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S160057671701408X/ge5043sup1.pdf
Derivations of scattering contrast and diffraction efficiency and additional fits of simulations for different sample models.


Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds