Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Hard X-rays with energies higher than several kiloelectronvolts can be focused to spot sizes below 10 nm with the present synchrotron beamlines, offering unique advantages for the chemical, elemental and structure analysis of matter. Nevertheless, a surface precision on the nanometre scale for the focusing optics is required and remains the main hurdle limiting X-ray analytical techniques with single-nanometre spatial resolution. On the other hand, to preserve the wavefront properties of coherent X-ray beams, precise control of the reflective mirror surface quality at the nanometre scale is demanded for X-ray free-electron laser applications. In this work, the surface shape of a multilayer-coated X-ray mirror is controlled by layer stresses. The desired surface profile of the mirror is differentiated to its second order to obtain its corresponding curvature profile. With a step size of 1 mm along the mirror length, different coating thicknesses are applied to create different layer thermal stresses from uniform temperature change. The mirror surface profile can be obtained by integrating the curvature profile to its second order and further corrected by moving constant values for the slope and height. The technical process is simulated by finite element analysis (FEA). A case study showed that the residual slope error and the residual height error between the desired shape and the FEA result are 0.22 µrad (r.m.s.) and 1.42 nm (r.m.s.), respectively.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds