Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
X-ray diffraction, possibly time-resolved during growth or annealing, is an important technique for the investigation of polytypism in free-standing nanowires. A major advantage of the X-ray diffraction approach for adequately chosen beam conditions is its high statistical significance in comparison with transmission electron microscopy. In this manuscript the interpretation of such X-ray intensity distribution is discussed, and is shown to be non-trivial and non-unique given measurements of the [111]c or [333]c reflection of polytypic nanowires grown in the (111)c direction. In particular, the diffracted intensity distributions for several statistical distributions of the polytypes inside the nanowires are simulated and compared. As an example, polytypic GaAs nanowires are employed, grown on a Si-(111) substrate with an interplanar spacing of the Ga (or As) planes in the wurtzite arrangement that is 0.7% larger than in the zinc blende arrangement along the (111)c direction. Most importantly, ambiguities of high experimental relevance in the case of strongly fluctuating length of the defect-free polytype segments in the nanowires are demonstrated. As a consequence of these ambiguities, a large set of deviations from the widely used Markov model for the stacking sequences of the nanowires cannot be detected in the X-ray diffraction data. Thus, the results here are of high relevance for the proper interpretation of such data.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds