Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Among the several available X-ray optics for synchrotron radiation producing micrometre and submicrometre beams with high intensity, the X-ray waveguide (WG) can provide the smallest hard X-ray beam in one direction. A drawback of this optics is that, owing to the divergence at the exit, a nanometre-sized spot on the sample can only be obtained if this is within a few micrometres of the WG exit. Another limitation is that in planar WGs the beam is compressed in only one direction. Here, using a dynamically bent elliptical Si/Pt mirror, the guided X-ray beam has been refocused at ∼1 m from the waveguide exit. The large working distance between the device and the submicrometre focus leaves some space for sample environment (vacuum chamber, furnace, cryostat, magnets, high-pressure device etc.) and allows cross-coupled geometries with two WGs for efficient compression in two directions.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds