Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The SET3 complex (SET3C) is a seven-subunit histone deacetylase complex that is capable of transcriptional regulation. Methylated histone 3 marks recruit SET3C to the nucleosome, and the SET3C catalytic subunits deacetylate the histone 3 and 4 tails. There is very limited structural knowledge of the SET3C subunits, with most subunits having unknown structures or functions. Here, a catalytically active SET3 complex was endogenously purified from Saccharo­myces cerevisiae and utilized for negative-stain electron microscopy (EM) to determine an apo model for the holo complex. The negative-stain EM 3D model revealed a three-lobe architecture, with each lobe extending from a central point.

Supporting information

xlsx

Microsoft Excel (XLSX) file https://doi.org/10.1107/S2053230X22000553/ek5025sup1.xlsx
Supplementary Table S1. Parameters and calculations of SET3C volumes obtained from negative-stain EM and AlphaFold density maps


Subscribe to Acta Crystallographica Section F: Structural Biology Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. F
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds