Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The concept that equates oxidation and pressure has been successfully utilized in explaining the structural changes observed in the M2S subnets of M2SOx (x = 3, 4) compounds (M = Na, K) when compared with the structures (room- and high-pressure phases) of their parent M2S `alloy' [Martínez-Cruz et al. (1994), J. Solid State Chem. 110, 397–398; Vegas (2000), Crystallogr. Rev. 7, 189–286; Vegas et al. (2002), Solid State Sci. 4, 1077–1081]. These structural changes suggest that if M2SO2 would exist, its cation array might well have an anti-CaF2 structure. On the other hand, in an analysis of the existing thermodynamic data for M2S, M2SO3 and M2SO4 we have identified, and report, a series of unique linear relationships between the known ΔfHo and ΔfGo values of the alkali metal (M) sulfide (x = 0) and their oxyanion salts M2SOx (x = 3 and 4), and the similarly between M2S2 disulfide (x = 0) and disulfur oxyanion salts M2S2Ox (x = 3, 4, 5, 6 and 7) and the number of O atoms in their anions x. These linear relationships appear to be unique to sulfur compounds and their inherent simplicity permits us to interpolate thermochemical data (ΔfHo) for as yet unprepared compounds, M2SO (x = 1) and M2SO2 (x = 2). The excellent linearity indicates the reliability of the interpolated data. Making use of the volume-based thermodynamics, VBT [Jenkins et al. (1999), Inorg. Chem. 38, 3609–3620], the values of the absolute entropies were estimated and from them, the standard ΔfSo values, and then the ΔfGo values of the salts. A tentative proposal is made for the synthesis of Na2SO2 which involves bubbling SO2 through a solution of sodium in liquid ammonia. For this attractive thermodynamic route, we estimate ΔGo to be approximately −500 kJ mol−1. However, examination of the stability of Na2SO2 raises doubts and Na2SeO2 emerges as a more attractive target material. Its synthesis is likely to be easier and it is stable to disproportionation into Na2S and Na2SeO4. Like Na2SO2, this compound is predicted to have an anti-CaF2 Na2Se subnet.

Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds