Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
D-Allulose, a low-calorie rare sugar with various physiological functions, is mainly produced through the isomerization of D-fructose by ketose 3-epimerases (KEases), which exhibit various substrate specificities. A novel KEase from a Clostridia bacterium (CDAE) was identified to be a D-allulose 3-epimerase and was further characterized as thermostable and metal-dependent. In order to explore its structure–function relationship, the crystal structure of CDAE was determined using X-ray diffraction at 2.10 Å resolution, revealing a homodimeric D-allulose 3-epimerase structure with extensive interactions formed at the dimeric interface that contribute to structure stability. Structural analysis identified the structural features of CDAE, which displays a common (β/α)8-TIM barrel and an ordered Mn2+-binding architecture at the active center, which may explain the positive effects of Mn2+ on the activity and stability of CDAE. Furthermore, comparison of CDAE and other KEase structures revealed several structural differences, highlighting the remarkable differences in enzyme–substrate binding at the O4, O5 and O6 sites of the bound substrate, which are mainly induced by distinct hydrophobic pockets in the active center. The shape and hydrophobicity of this pocket appear to produce the differences in specificity and affinity for substrates among KEase family enzymes. Exploration of the crystal structure of CDAE provides a better understanding of its structure–function relationship, which might provide a basis for molecular modification of CDAE and further provides a reference for other KEases.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2059798322007707/dw5231sup1.pdf
Supplementary Figures and Tables.

PDB reference: D-allulose 3-epimerase, 7x7w


Subscribe to Acta Crystallographica Section D: Biological Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds