Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
CsCoO2, featuring a two-dimensional layered architecture of edge- and vertex-linked CoO4 tetrahedra, is subjected to a temperature-driven reversible second-order phase transformation (α → β) at 100 K, which corresponds to a structural relaxation with concurrent tilting and breathing modes of edge-sharing CoO4 tetrahedra. In the present investigation, it was found that pressure induces a phase transition, which encompasses a dramatic change in the connectivity of the tetrahedra. At 923 K and 2 GPa, β-CsCoO2 undergoes a first-order phase transition to a new quenchable high-pressure polymorph, γ-CsCoO2. It is built up of a three-dimensional cristobalite-type network of vertex-sharing CoO4 tetrahedra. According to a Rietveld refinement of high-resolution powder diffraction data, the new high-pressure polymorph γ-CsCoO2 crystallizes in the tetragonal space group I41/amd:2 (Z = 4) with the lattice constants a = 5.8711 (1) and c = 8.3214 (2) Å, corresponding to a shrinkage in volume by 5.7% compared with the ambient-temperature and atmospheric pressure β-CsCoO2 polymorph. The pressure-induced transition (β → γ) is reversible; γ-CsCoO2 stays metastable under ambient conditions, but transforms back to the β-CsCoO2 structure upon heating to 573 K. The transformation pathway revealed is remarkable in that it is topotactic, as is demonstrated through a clean displacive transformation track between the two phases that employs the symmetry of their common subgroup Pb21a (alternative setting of space group No. 29 that matches the conventional β-phase cell).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520619008436/dq5038sup1.cif
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520619008436/dq5038sup2.pdf
Supplementary material

avi

AVI file https://doi.org/10.1107/S2052520619008436/dq5038CsCoO2_cubic-orth29_goodmatch_anim_sup3.avi
Supplementary material

gz

Gzipped compressed file https://doi.org/10.1107/S2052520619008436/dq5038CsCoO2_cubic-orth29_goodmatch_sup4.isoviz.gz
Supplementary material

txt

Text file https://doi.org/10.1107/S2052520619008436/dq5038CsCoO2_cubic-orth29_goodmatch_dist_sup5.txt
Supplementary material

CCDC reference: 1907016

Computing details top

Program(s) used to refine structure: TOPAS-5 (Bruker AXS 2014).

(I) top
Crystal data top
CsCoO2Z = 4
Mr = 223.84Dx = 5.183 Mg m3
Tetragonal, I41/amd:2Melting point: ???.? K
Hall symbol: -I 4bd 2Mo Kα1 radiation, λ = 0.70929 Å
a = 5.87111 (13) ŵ = 18.42 (1) mm1
c = 8.32141 (19) ÅT = 303 K
V = 286.84 (2) Å3
Data collection top
???
diffractometer
Data collection mode: transmission
Radiation source: sealed X-ray tube, ???Scan method: step
??? monochromator2θmin = 7.000°, 2θmax = 47.056°, 2θstep = 0.011°
Refinement top
Rp = 5.4123641.455 data points
Rwp = 7.405Profile function: fundamental parameter
Rexp = 6.198Background function: Chebyshev polynoms
R(F) = ???
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs1_100.250.3753.9712*
Co1_100.750.1250.174421*
O1_10002.671625*
Geometric parameters (Å, º) top
Co1_1—O1_1i1.7990 (1)O1_1—O1_1iii2.9356 (1)
Co1_1—O1_1ii1.7990 (1)O1_1—O1_1vii2.9356 (1)
Co1_1—O1_1iii1.7990 (1)O1_1—O1_1viii2.9388 (1)
Co1_1—O1_1iv1.7990 (1)O1_1—O1_1ix2.9388 (1)
O1_1—Co1_1v1.7990 (1)O1_1—O1_1x2.9388 (1)
O1_1—Co1_1vi1.7990 (1)O1_1—O1_1xi2.9388 (1)
O1_1ii—Co1_1—O1_1i109.5310 (9)O1_1ix—O1_1—O1_1vii119.9634 (5)
O1_1iii—Co1_1—O1_1ii109.3516 (18)O1_1ix—O1_1—O1_1iii60.0366 (5)
O1_1iii—Co1_1—O1_1i109.5310 (9)O1_1ix—O1_1—Co1_1vi35.2345 (4)
O1_1iv—Co1_1—O1_1iii109.5310 (9)O1_1ix—O1_1—Co1_1v144.7655 (4)
O1_1iv—Co1_1—O1_1ii109.5310 (9)O1_1x—O1_1—O1_1ix120.0732 (11)
O1_1iv—Co1_1—O1_1i109.3516 (18)O1_1x—O1_1—O1_1viii59.9268 (11)
Co1_1vi—O1_1—Co1_1v180.000O1_1x—O1_1—O1_1vii60.0366 (5)
O1_1iii—O1_1—Co1_1vi35.3242 (9)O1_1x—O1_1—O1_1iii119.9634 (5)
O1_1iii—O1_1—Co1_1v144.6758 (9)O1_1x—O1_1—Co1_1vi144.7655 (4)
O1_1vii—O1_1—O1_1iii180.000O1_1x—O1_1—Co1_1v35.2345 (4)
O1_1vii—O1_1—Co1_1vi144.6758 (9)O1_1xi—O1_1—O1_1x180.000
O1_1vii—O1_1—Co1_1v35.3242 (9)O1_1xi—O1_1—O1_1ix59.9268 (11)
O1_1viii—O1_1—O1_1vii60.0366 (5)O1_1xi—O1_1—O1_1viii120.0732 (11)
O1_1viii—O1_1—O1_1iii119.9634 (5)O1_1xi—O1_1—O1_1vii119.9634 (5)
O1_1viii—O1_1—Co1_1vi144.7655 (4)O1_1xi—O1_1—O1_1iii60.0366 (5)
O1_1viii—O1_1—Co1_1v35.2345 (4)O1_1xi—O1_1—Co1_1vi35.2345 (4)
O1_1ix—O1_1—O1_1viii180.000O1_1xi—O1_1—Co1_1v144.7655 (4)
Symmetry codes: (i) y1/4, x+3/4, z+1/4; (ii) x, y+1, z; (iii) x, y+1/2, z; (iv) y+1/4, x+3/4, z+1/4; (v) x, y1, z; (vi) y+3/4, x+1/4, z1/4; (vii) x, y1/2, z; (viii) y1/4, x1/4, z+1/4; (ix) y+1/4, x+1/4, z1/4; (x) y+1/4, x1/4, z+1/4; (xi) y1/4, x+1/4, z1/4.
 

Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds