Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A formalism is presented which allows the quantitative evaluation of data from grazing-incidence small-angle neutron and X-ray scattering - GISANS and GISAXS - in the framework of the distorted wave Born approximation. While several aspects have been reported previously, this formalism combines solutions for scattering intensities in both reflection and transmission hemispheres, taking into account instrumental resolution effects. This formalism is applied to the case of GISANS from self-organized diblock copolymers, ordered in perpendicular lamellar structures on an Si wafer in randomly oriented short-range-ordered regions. The periodicity of D = 85 (9) nm found for deuterated polystyrene-polybutadiene of molecular weight  Mw = 165 kg mol-1 and a molecular weight fraction of the deuterated polystyrene block of 52% is consistent with atomic force microscopy and specular neutron reflectivity results.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds