Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The feasibility of generating X-ray pulses in the 4–8 keV fundamental photon energy range with 0.65 TW peak power, 15 fs pulse duration and 9 × 10−5 bandwidth using the LCLS-II copper linac and hard X-ray (HXR) undulator is shown. In addition, third-harmonic pulses with 8–12 GW peak power and narrow bandwidth are also generated. High-power and small-bandwidth X-rays are obtained using two electron bunches separated by about 1 ns, one to generate a high-power seed signal, the other to amplify it through the process of the HXR undulator tapering. The bunch delay is compensated by delaying the seed pulse with a four-crystal monochromator. The high-power seed leads to higher output power and better spectral properties, with more than 94% of the X-ray power within the near-transform-limited bandwidth. Some of the experiments made possible by X-ray pulses with these characteristics are discussed, such as single-particle imaging and high-field physics.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds